LinuxCon North America 2014

Kernel Features for Reducing Power Consumption on Embedded Devices

Krzysztof Kozlowski

k.kozlowski@samsung.com

Samsung R&D Institute Poland

Agenda

- Overview and goals
- CPUfreq (with clock down)
- Run-time PM and power domains
- SoC low power states
- CPU idle drivers
- Devfreq
- Summary

Overview and goals

- Limit the consumption of energy by mobile device
- Do not hurt performance (at least to some extend)
- Target devices: smartphones, tablets, wearables
 - Mobile devices are somehow different
 - Energy consumption is an important factor (How often do you have to charge your phone?)
 - Mobile device is mostly idle (more opportunities to sleep)
- The speech will focus on ARM architecture and Samsung's Exynos System-on-Chip family, although ideas are not limited to Exynos

Overview and goals (2)

- Mainline Linux kernel is changing very fast
 - Some details about specific kernel drivers may become obsolete soon
 - Details as for current mainline kernel: 3.16 and linux-next (from August)

Disclaimer

- All measurements were done on development devices:
 - Custom kernels
 - Custom operating systems
- They are not representative for market/end products
- Sometimes measurements on these devices may not be even close to market products
- Many measurements were done in specific custom configuration, very different from market product, e.g.:
 - No CPU idle driver, no CPUfreq driver
 - Booted to init=/bin/sh

Environment for tests

Measured on:

- Trats2, smartphone (Exynos 4412, 4 cores, freq 200-1400 MHz)
- Gear1-like wearable (Exynos 4212, 2 cores, 200-1400 MHz)
- Exynos 3250 development board (2 cores, 100-1000 MHz)

Kernel used:

- Exynos 4212 and 4412 : linux-next (next-20140804)
- Exynos 3250: internal Linux kernel tree 3.10
 - Lack of full support in mainline

CPUfreq

- Ondemand governor adjusts the frequency and voltage to current load
- Specific conditions to embedded world one frequency and voltage for whole cluster
 - On most SoCs: one clock frequency/voltage for all CPUs
 - Except big.LITTLE (e.g. 2 clusters on quad-core Exynos Octa)
- Dual cluster SoCs have big.LITTLE CPUfreq driver

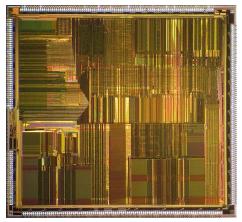


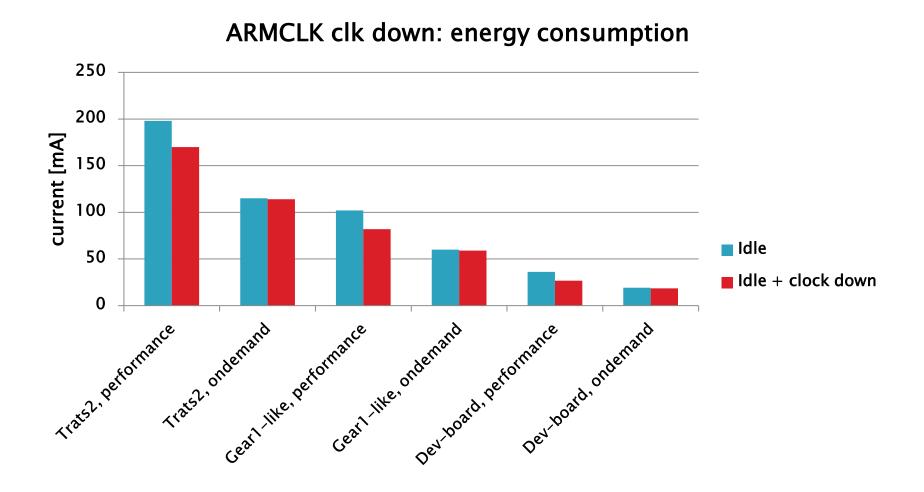
Photo by Pauli Rautakorpi

CPUfreq on SoCs with one cluster

- Separate CPUfreq drivers for each SoC
- Moving toward one generic cpufreq-cpu0 driver
- cpufreq-cpu0 requires:
 - Clock to operate on (provided by clock driver)
 - Optionally voltage regulator (provided by regulator driver)
 - Table of Operating Performance Points from Device Tree
 - OPP is a tuple of frequency and voltage
- Clock/regulator/OPP frameworks add necessary abstraction layer and make cpufreq-cpu0 a generic solution

ARMCLK clock down feature

- Reduces the frequency upon entering WFI or WFE instruction (Wait for Interrupt/Event)
 - All cores must be idle
- Behaves like a hardware ondemand CPUfreq governor
 - But only for clock frequency (voltages remain untouched)
- Supported by most of Exynos SoCs
 - As part of clock driver for Exynos 3250, Exynos 4 and Exynos 5250 [1]


ARMCLK clk down: energy consumption

Board	SoC	Frequency [MHz]	Idle [mA]	Idle + clock down [mA]
Trats2	Exynos 4412	1400	198	170
		200	115	114
Gear1-like	Exynos 4212	1400	102	82
		200	60	59
Dev-board	Exynos 3250	1000	36.2	26.7
		100	19.2	18.5

- Measurements in idle mode (basic CPU idle WFI), no load
- No benefits if CPUfreq governor is ondemand which is quite obvious
 - ARMCLK cannot get below minimal frequency used in CPUfreq driver
- Ondemand CPUfreq reduces also ARM voltage

ARMCLK clk down: energy consump. (2)

Wearable... for developers!

Run-time PM

- Putting devices into low power states when not used
 - Optionally: automatically delayed suspends
- Needs support in device drivers
 - Driver specifies when it is working and idle
 - Usage counter (pm_runtime_get()/put())
 - Time of last activities (pm_runtime_mark_last_busy())
 - Driver implements runtime suspend and resume callbacks

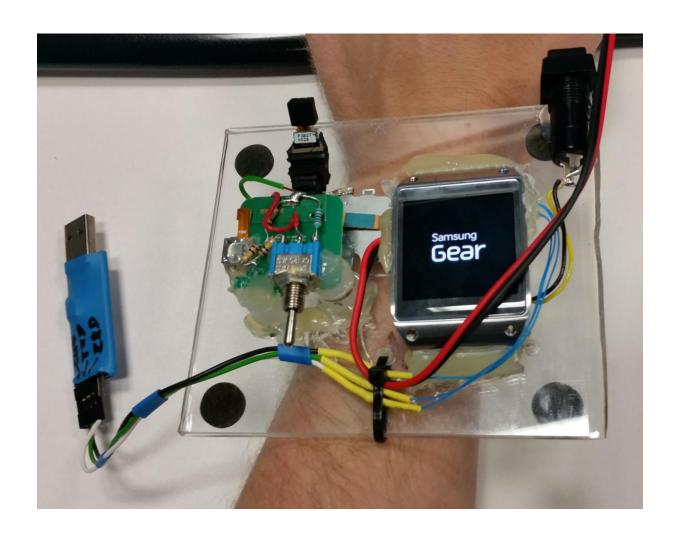

Power domains

- Local power control, powered independently
- Example power domains:
 - CPU-s
 - Multi-Format Codec (MFC)
 - G3D (e.g. Mali)
 - LCD
 - Image Signal Processor
 - Camera
- Linux offers a generic power domain framework [2]
 - Used by SH-Mobile and Exynos
- Other vendors implement this on their own

Generic power domains

Multiple Linux devices can be attached to a domain

Generic power domains (2)


- Integrates with runtime PM
 - If all attached devices have been suspended, power down whole domain
- Differences in energy consumption:

Board	SoC	All domains enabled permanently [mA]	Power domain runtime PM [mA]	Diff [%]
Trats2	Exynos 4412	124	114	-8%
Dev-board	Exynos 3250	24.7	18.5	-25%

Measurements in idle mode (basic CPU idle - WFI), no load

It is truly a wearable!

SoC low power states

- When in idle, enter low power state to save energy
- Wait for Interrupt (WFI), basic idle state
- Various SoCs support deeper low power states
 - Msm: retention, standalone power collapse, power collapse
 - Exynos: ARM Off TOP Running (AFTR), W-AFTR, Low Power Audio playback (LPA)
 - W-AFTR and LPA extend the AFTR low power mode
- Usually they have higher latency for enter and leave
 - Enter deeper state only if we won't be awaken right away

SoC low power states on Exynos

- System-level states
 - Whole system must be prepared
 - 1. CPU[1-n] must be powered off
 - 2. Then CPU0 triggers entering deep low power state
- ARM Off TOP Running (AFTR)
 - Cortex core is power gated (power supplied but internally gated)
 - Most of other modules are powered on (e.g. Audio, MMC, CoreSight, USB, I2C, UART etc.)

SoC low power states on Exynos (2)

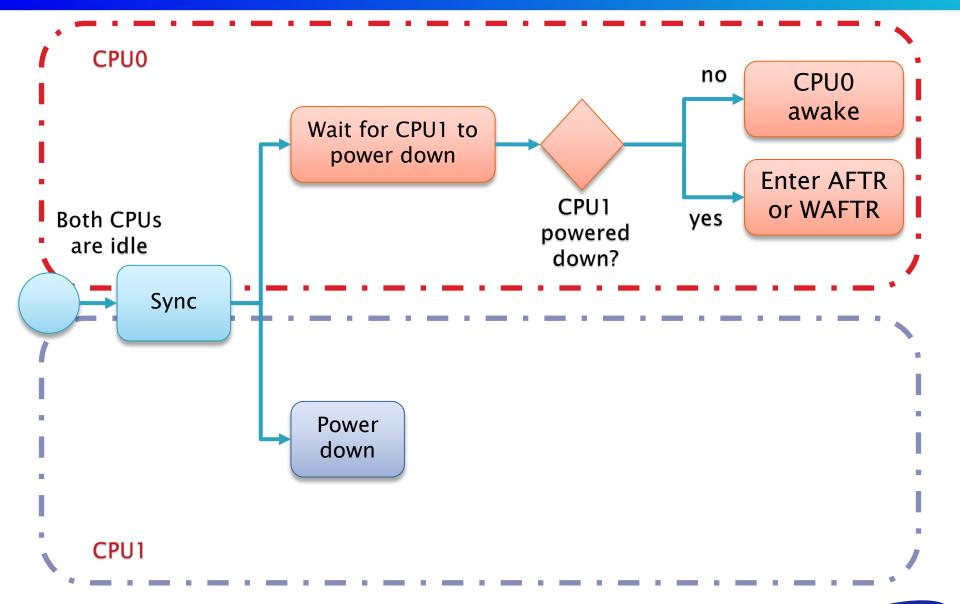
- W-AFTR (on Exynos 3250)
 - AFTR + power gating everything that can be power gated
 - Except Dynamic Memory Controller, DDR, RTC
 - Fast wake-up
- Low Power Audio playback (LPA, on other Exynos SoCs)
 - AFTR + power gating everything that can be power gated
 - Contents of L2 cache and TOP modules are preserved (retention)
 - Audio related blocks are on

SoC low power states on Exynos (3)

Sleep

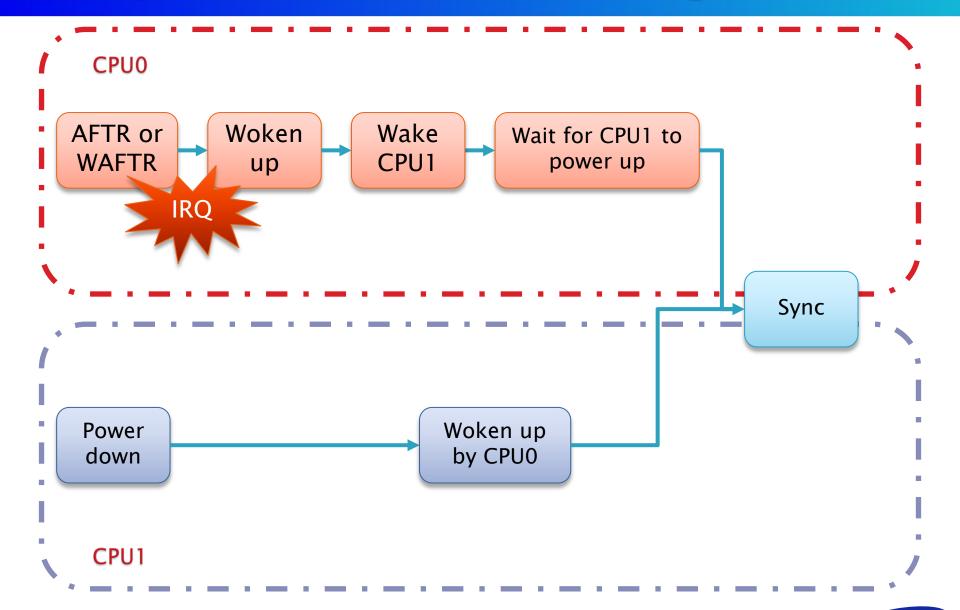
- Power not supplied (regulators turned off)
- Only ALIVE and RTC blocks are on
- Entered with Suspend-to-RAM

Low power state	Subsystem	Requires additional drivers
WFI	Scheduler (idle loop)	No, built-in
AFTR, W-AFTR, LPA	CPU idle	CPU idle driver and support for board (arch/arm/mach-*)
Sleep	Suspend	support for board (arch/arm/mach-*)



Entering deep low power states

- From CPU idle perspective: states are "coupled"
 - Entering AFTR/W-AFTR/LPA depends on powering down all other CPUs[1-n]
 - If only CPU0 is left on, then CPU idle triggers low power state
- User space may hot unplug idle CPUs[1-n]
 - echo 0 > /sys/bus/cpu/devices/cpu1/online
 - E.g. mpdecision daemon for msm
- Kernel may synchronize entering idle states
 - Coupled CPU idle drivers
- echo mem > /sys/power/state



Coupled CPU idle driver - entering

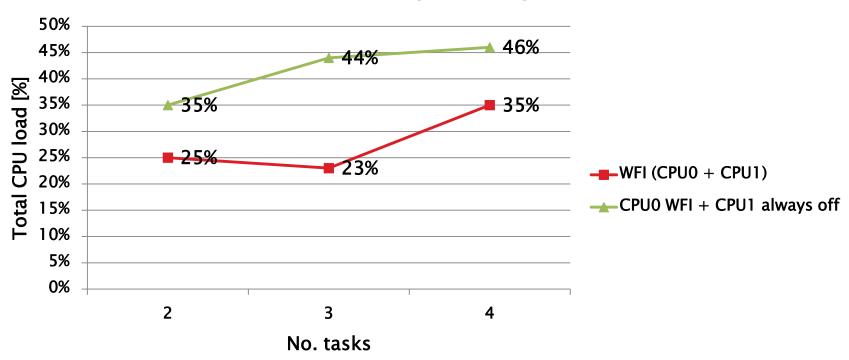
Coupled CPU idle driver - leaving

CPU idle drivers in Linux

- big.LITTLE
 - Suspend whole cluster
 - Supported Versatile TC2 (Linux 3.16) and Exynos 5420 (next)
- Exynos AFTR
 - Currently only for Exynos 4210 and Exynos 5250
 - Requires manual hot unplug of CPU1 to work
- Coupled CPU idle driver for Exynos (CPU1 off, CPU0 AFTR)
 - On going work, patch by Daniel Lezcano [3]

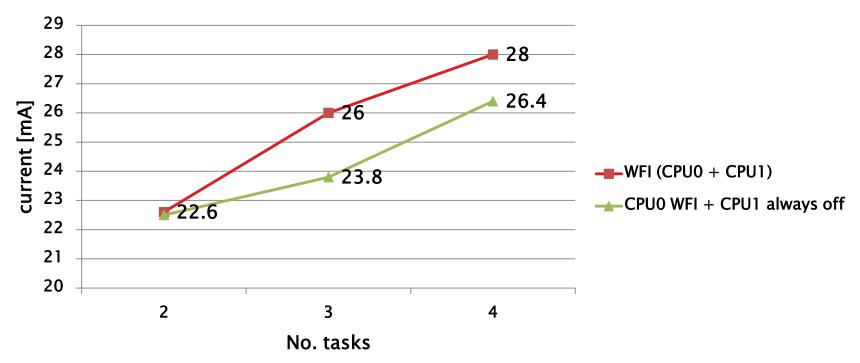
CPU idle measurements

- Due to lack of support in mainline all measurements were done on internal Linux kernel tree 3.10
- Development board with Exynos 3250 (2 cores, 100-1000 MHz)
- The goal of measurements is to show overall differences between SoC low power states
- Workload: simple computation tasks (work-sleepwork), mainly used to test scheduler


CPU idle measurements (2)

- Tested configurations:
 - CPUs enter only WFI (no CPU idle driver)
 - Power down CPU1 from userspace permanently, CPU0 enters
 WFI (no CPU idle driver)
 - Coupled CPU idle: CPU1 power off, CPU0 AFTR
 - Coupled CPU idle: CPU1 power off, CPU0 AFTR or W-AFTR
 - W-AFTR is entered if certain conditions are met. If no, enter AFTR.
 - Conditions:
 - Camera, G3D, MFC power domains are off
 - Certain bus clocks are gated
 - MMC is idle

CPU idle: energy consumption, load



CPU frequency	2 tasks	3 tasks	4 tasks
WFI (CPU0 + CPU1)	200 MHz	200-600 MHz	200-600 MHz
CPU1 powered off	500 MHz	300-900 MHz	400-1000 MHz

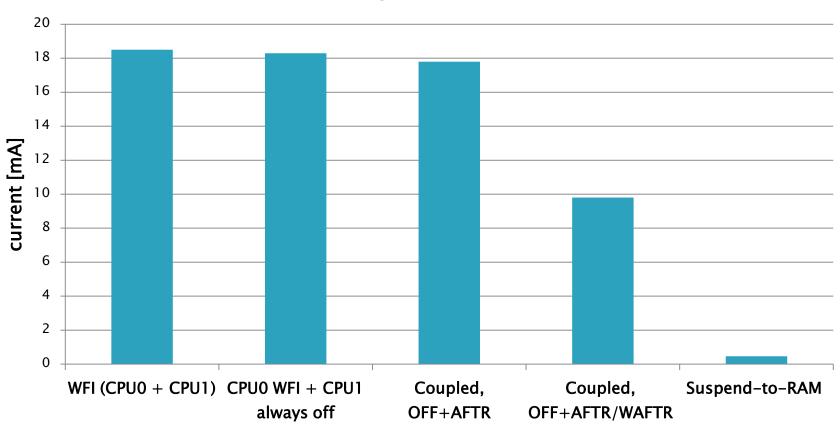
CPU idle: energy consumption, load (2)

CPU frequency	2 tasks	3 tasks	4 tasks
WFI (CPU0 + CPU1)	200 MHz	200-600 MHz	200-600 MHz
CPU1 powered off	500 MHz	300-900 MHz	400-1000 MHz

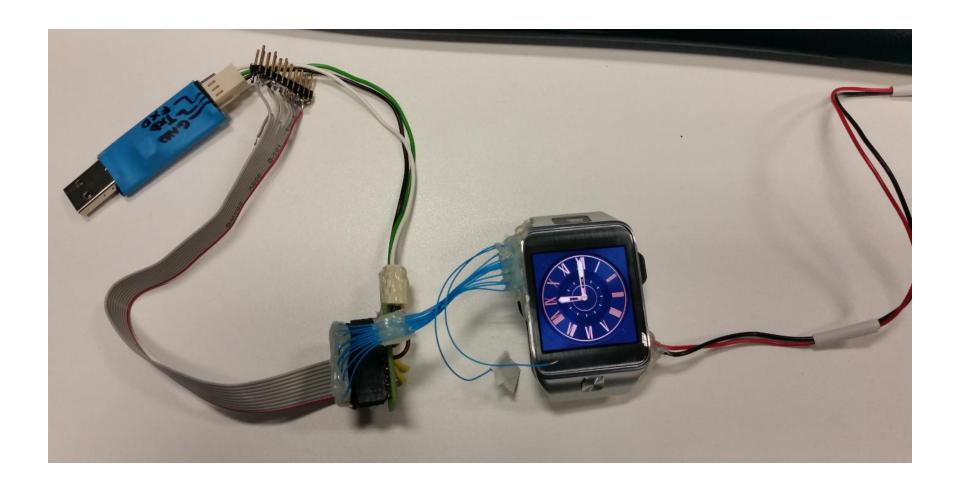
CPU idle: energy consumption, load (3)

- What about coupled CPU idle drivers (CPU1 off, CPU0 AFTR or W-AFTR)?
 - No differences because the load prevented entering deeper idle states
- But a new driver which powers off CPU1 also when CPU0 is busy makes sense
 - Workload consolidation in scheduler could also help (increased idle time of CPU1)
 - Already discussed and some works are in progress [4]
 - Power-aware scheduling <a>[5]
 - Sched packing [6]
 - Workload consolidation and CPU ConCurrency [7]

CPU idle: energy consumption, idle


CPU idle driver	Idle [mA]	Diff against WFI
WFI (CPU0 + CPU1)	18.5	
CPU0 WFI + CPU1 always off	18.3	-1.0%
CPU idle, coupled, OFF+AFTR	17.8	-3.8%
CPU idle, coupled, OFF+AFTR/WAFTR	9.8	-47.0%
Suspend-to-RAM	0.46	

- No load
- Exynos 3250 CPU @100 MHz


CPU idle: energy consumption, idle (2)

CPU idle: energy consumption, idle

Improvements in development board...

Devfreq

- Dynamic Voltage and Frequency Scaling for devices
 - e.g. Memory bus, MFC, G2D, ISP, SD/MMC
- Governors similar to CPUfreq (ondemand etc.)
 - Current load may be taken from device performance counters
 - Exynos: number of read and write operations in Dynamic Memory Controller
- Mainline: only drivers for Exynos 4 and Exynos 5250
 - ... but only for Exynos 5250 is working

Devfreq: energy consumption, idle

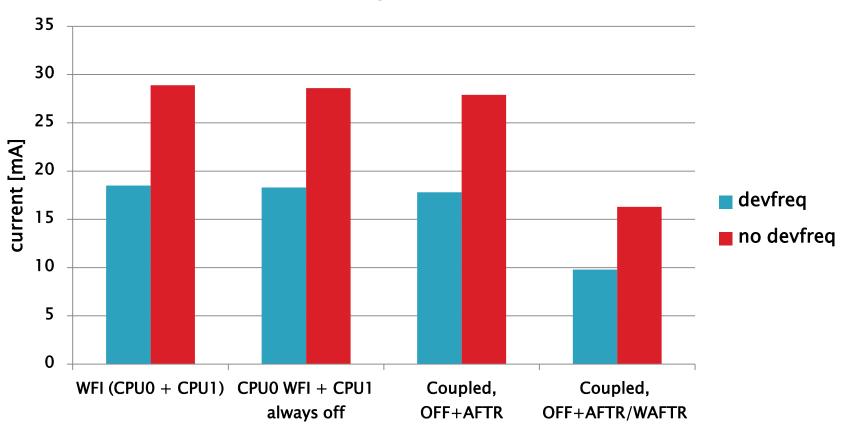
- Due to lack of support in mainline all measurements were done on internal Linux kernel tree 3.10
- Development board with Exynos 3250 (2 cores, 100-1000 MHz)
- The goal of measurements is to show overall difference that devfreq makes

Devfreq: energy consumption, idle (2)

- No devfreq means that highest voltages and clock rates are chosen for:
 - bus clocks
 - INT and MIF regulators supplying power to many SoC modules

Possible values for Exynos 3250 development board	Min	Max
INT voltage	0.80 V	1.00 V
MIF voltage	0.85 V	1.00 V
DMC clock	50 MHz	400 MHz
LEFT/RIGHT buses clock	50 MHz	133 MHz

Devfreq: energy consumption, idle (3)


CPU idle driver	No devfreq [mA]	With devfreq [mA]	Diff [%]
WFI (CPU0 + CPU1)	28.9	18.5	-36%
CPU0 WFI + CPU1 always off	28.6	18.3	-36%
CPU idle, coupled, OFF+AFTR	27.9	17.8	-36%
CPU idle, coupled, OFF+AFTR/WAFTR	16.3	9.8	-40%

- No load
- Exynos 3250 CPU @100 MHz

Devfreq: energy consumption, idle (4)

Summary

- Linux kernel has a number of features for reducing energy usage
 - Unfortunately many drivers are not yet present in mainline
- Most benefits in reducing energy consumption come with:
 - Frequency and voltage scaling (CPUfreq, devfreq)
 - Entering low power system states (CPU idle)
 - Developing good drivers
 - For external resources use abstraction provided by the kernel (e.g. Common Clock Framework, regulators)
 - Runtime PM (if it is applicable)

Summary (2)

- Still a lot of work to do
 - Drivers: CPU idle, devfreq
 - Integration between scheduler, CPUfreq and CPU idle

Q&A

Thank you!
Any questions?

References

- [1] Common Clock Framework drivers for Exynos 4, 3250 and 5250 drivers/clk/samsung/clk-exynos*.c
- [2] Generic Device Power Domains include/linux/om_domain.h
- [3] Coupled cpuidle driver for Exynos Exynos4: cpuidle: support dual CPUs with AFTR state http://thread.gmane.org/gmane.linux.power-management.general/44248
- ▶ [4] Toward a more power-efficient scheduler, Jonathan Corbet http://lwn.net/Articles/546664/

References (2)

- [5] Morten Rasmussen
 - Power-aware scheduling v2 https://lkml.org/lkml/2013/10/11/547
 - sched: Energy cost model for energy-aware scheduling https://lkml.org/lkml/2014/5/23/621
- ▶ [6] Sched: packing tasks (and newer works), Vincent Guittot https://lkml.org/lkml/2013/10/18/121
- > [7] A new CPU load metric for power-efficient scheduler: CPU ConCurrency, Yuyang Du
 - https://lkml.org/lkml/2014/6/25/162

