

LXC, Docker,
and the future of
software delivery

Linuxcon – New Orleans, 2013

Jérôme Petazzoni, dotCloud Inc.

Outline

● Why Linux Containers?
● What are Linux Containers exactly?
● What do we need on top of LXC?
● Why Docker?
● What is Docker exactly?
● Where is it going?

Why Linux Containers?

What are
we trying
to solve?

The Matrix From Hell

The Matrix From Hell

Many payloads

● backend services (API)
● databases
● distributed stores
● webapps

Many payloads

● Go
● Java
● Node.js
● PHP
● Python
● Ruby
● …

Many payloads

● CherryPy
● Django
● Flask
● Plone
● ...

Many payloads

● Apache
● Gunicorn
● uWSGI
● ...

Many payloads

+ your code

Many targets

● your local development environment
● your coworkers' developement environment
● your Q&A team's test environment
● some random demo/test server
● the staging server(s)
● the production server(s)
● bare metal
● virtual machines
● shared hosting

 + your dog's Raspberry Pi

Many targets

● BSD
● Linux
● OS X
● Windows

Many targets

● BSD
● Linux
● OS X
● Windows

The Matrix From Hell

Static
website ? ? ? ? ? ? ?

Web
frontend ? ? ? ? ? ? ?

background
workers ? ? ? ? ? ? ?

User DB ? ? ? ? ? ? ?

Analytics
DB ? ? ? ? ? ? ?

Queue ? ? ? ? ? ? ?

Development
VM

QA Server
Single Prod

Server
Onsite Cluster Public Cloud

Contributor’s
laptop

Customer
Servers

Real-world analogy:
containers

Many products

● clothes
● electronics
● raw materials
● wine
● …

Many transportation methods

● ships
● trains
● trucks
● ...

Another matrix from hell

? ? ? ? ? ? ?

? ? ? ? ? ? ?

? ? ? ? ? ? ?

? ? ? ? ? ? ?

? ? ? ? ? ? ?

? ? ? ? ? ? ?

Solution to the transport problem:
the intermodal shipping container

Solution to the transport problem:
the intermodal shipping container

● 90% of all cargo now shipped in a standard container
● faster and cheaper to load and unload on ships

(by an order of magnitude)
● less theft, less damage
● freight cost used to be >25% of final goods cost,

now <3%
● 5000 ships deliver 200M containers per year

Solution to the deployment problem:
the Linux container

Linux containers...

● run everywhere
– regardless of kernel version

– regardless of host distro

– (but container and host architecture must match)

● run anything
– if it can run on the host, it can run in the container

– i.e., if it can run on a Linux kernel, it can run

What are Linux Containers exactly?

High level approach:
it's a lightweight VM

● own process space
● own network interface
● can run stuff as root
● can have its own /sbin/init

(different from the host)

Low level approach:
it's chroot on steroids

● can also not have its own /sbin/init
● container = isolated process(es)
● share kernel with host
● no device emulation (neither HVM nor PV)

Separation of concerns:
Dave the Developer

● inside my container:
– my code

– my libraries

– my package manager

– my app

– my data

Separation of concerns:
Oscar the Ops guy

● outside the container:
– logging

– remote access

– network configuration

– monitoring

How does it work?
Isolation with namespaces

● pid
● mnt
● net
● uts
● ipc
● user

How does it work?
Isolation with cgroups

● memory
● cpu
● blkio
● devices

Efficiency: almost no overhead

● processes are isolated,
but run straight on the host

● CPU performance = native performance
● memory performance = a few % shaved off for

(optional) accounting
● network performance = small overhead; can

be optimized to zero overhead

Efficiency: storage-friendly

● unioning filesystems
(AUFS, overlayfs)

● snapshotting filesystems
(BTRFS, ZFS)

● copy-on-write
(thin snapshots with LVM or device-mapper)

This wasn't part of LXC at first; but you definitely want it!

Efficiency: storage-friendly

● provisioning now takes a few milliseconds
● … and a few kilobytes
● creating a new base/image/whateveryoucallit

takes a few seconds

Docker

What's Docker?

● Open Source engine to commoditize LXC
● using copy-on-write for quick provisioning
● allowing to create and share images
● propose a standard format for containers

Yes, but...

● « I don't need Docker; I can do all that stuff
with LXC tools, rsync, some scripts! »

● correct on all accounts; but it's also true for
apt, dpkg, rpm, yum, etc.

● the whole point is to commoditize,
i.e. make it ridiculously easy to use

Docker: authoring images

● you can author « images »
– either with « run+commit » cycles, taking

snapshots

– or with a Dockerfile (=source code for a container)

– both ways, it's ridiculously easy

● you can run them
– anywhere

– multiple times

Dockerfile example

FROM ubuntu

RUN apt-get -y update
RUN apt-get install -y g++
RUN apt-get install -y erlang-dev erlang-manpages erlang-base-hipe ...
RUN apt-get install -y libmozjs185-dev libicu-dev libtool ...
RUN apt-get install -y make wget

RUN wget http://.../apache-couchdb-1.3.1.tar.gz | tar -C /tmp -zxf-
RUN cd /tmp/apache-couchdb-* && ./configure && make install

RUN printf "[httpd]\nport = 8101\nbind_address = 0.0.0.0" >
 /usr/local/etc/couchdb/local.d/docker.ini

EXPOSE 8101
CMD ["/usr/local/bin/couchdb"]

Docker: sharing images

● you can push/pull images to/from a registry
(public or private)

● you can search images through a public index
● dotCloud maintains a collection of base

images
(Ubuntu, Fedora...)

● satisfaction guaranteed or your money back

Docker: not sharing images

● private registry
– for proprietary code

– or security credentials

– or fast local access

Typical workflow

● code in local environment
(« dockerized » or not)

● each push to the git repo triggers a hook
● the hook tells a build server to clone the code and run

« docker build » (using the Dockerfile)
● the containers are tested (nosetests, Jenkins...),

and if the tests pass, pushed to the registry
● production servers pull the containers and run them
● for network services, load balancers are updated

Hybrid clouds

● Docker is part of OpenStack « Havana »,
as a Nova driver + Glance translator

● typical workflow:
– code on local environment

– push container to Glance-backed registry

– run and manage containers using OpenStack APIs

● Docker confirmed to work with:
Digital Ocean, EC2, Joyent, Linode, and many more
(not praising a specific vendor, just pointing that it « just works »)

Docker: the community

● Docker: >160 contributors
● latest milestone (0.6): 40 contributors
● GitHub repository: >600 forks

Docker: the ecosystem

● CoreOS (full distro based on Docker)
● Deis (PAAS; available)
● Dokku (mini-Heroku in 100 lines of bash)
● Flynn (PAAS; in development)
● Maestro (orchestration from a simple YAML file)
● OpenStack integration
● Shipper (fabric-like orchestration)

And many more

Docker roadmap

● Today: Docker 0.6
– LXC

– AUFS

● Tomorrow: Docker 0.7
– LXC

– device-mapper thin snapshots (target: RHEL)

● The day after: Docker 1.0
– LXC, libvirt, qemu, KVM, OpenVZ, chroot…

– multiple storage back-ends

– plugins

Thank you! Questions?

http://docker.io/

https://github.com/dotcloud/docker

@docker

@jpetazzo

http://docker.io/
https://github.com/dotcloud/docker

