
I/O Latency Optimization
with Polling
Damien Le Moal
Vault – Linux Storage and Filesystems Conference - 2017
March 22nd, 2017

3/21/17©2017 Western Digital Corporation or its affiliates. All rights reserved.

Outline

• I/O models
- IRQ vs polling
- NVM is coming ! Is this relevant ?

• Linux implementation
- Block Layer and NVMe driver

• Evaluation Results
- Classic polling vs Hybrid polling
- Impact of process scheduling
- Comparison with user level drivers

• Conclusion and next steps

3/21/17 2©2017 Western Digital Corporation or its affiliates. All rights reserved.

Hardware

Other context

User Process context

I/O Models: IRQ Based Completion

• Device generated interrupts (IRQ) are asynchronous events
– Device driver IRQ handler signals completion to waiters

Asynchronous command completion detection

3/21/17 3©2017 Western Digital Corporation or its affiliates. All rights reserved.

Device driver
command
submission

Command
execution

IRQ handler
(device driver)

VFS + BIO
stack

VFS + BIO
stack

Wait (take a nap)

System call
(read, write, ...) ...

User

Kernel

Hardware

Other context

User Process context

I/O Models: Polling Based Completion

• Polling is a CPU driven synchronous operation
– Active command completion detection from user process context

Synchronous command completion detection

3/21/17 4©2017 Western Digital Corporation or its affiliates. All rights reserved.

Device driver
command
submission

VFS + BIO
stack

VFS + BIO
stack

Are you
done ?

System call
(read, write, ...) ...

User

Kernel

Command
execution

IRQ vs Polling

• Polling can remove context switch (CS) overhead from I/O path
– And more: IRQ delivery delay, IRQ handler scheduling, ...
– But CPU spin-waits for the command completion: higher CPU load

Trade-off CPU load for lower I/O latency

3/21/17 5©2017 Western Digital Corporation or its affiliates. All rights reserved.

Command execution

BIO stacksyscall Device driver CS

CS

Sleep BIO stack

ISR

IRQ

Wake

Application perceived I/O latency

Command execution

BIO stacksyscall Device driver Are you done ? BIO stack

Application perceived I/O latency Gain

IRQ

Polling

CS

Is It Worth It ?

• Main saving comes from avoiding
execution context switches
– Cost can vary, but typically 0.5~2us, or

more...

• Latency relative improvements
compared to IRQ depend on the
typical command execution time
of the device
– For disk drives with milliseconds or

more command service time, polling
makes no sense

• Clearly polling becomes very
interesting for very fast Flash
SSDs and emerging NVM devices
– Device access latency near or lower

than context switch cost

It depends on your system and storage device

3/21/17 6©2017 Western Digital Corporation or its affiliates. All rights reserved.

Likely not

Yes !

May
be

Disks, tape, optical, ...

Flash SSDs

NVM SSDs

NVM is Coming ! Is This Relevant ?

• The vast majority of applications deployed today are not ready for NVM
– Relying on known block I/O interface / POSIX system call for data management
– Switching to NVM puts the burden of data integrity management on the application
• No file system in between “I/O” operations (memory copies) and the storage medium

– Block based interface likely to be present anyway
• Memory cell error management

• PCI Express devices are getting really fast
– Micro second order access speeds
– Works well with current early “slow” NVM medium
• DRAM-like performance will need more time

• Optimizing for block devices is still very relevant
– Other kernel components benefit too

Vast majority of applications are not ready for NVM

3/21/17 7©2017 Western Digital Corporation or its affiliates. All rights reserved.

Linux Block I/O Polling Implementation

• Implemented by blk_mq_poll
– block-mq enabled devices only
– Device queue flagged with “poll enabled”
• Can be controlled through sysfs
• Enabled by default for devices supporting it,

e.g. NVMe

• Polling is tried for any block I/O
belonging to a high-priority I/O
context (IOCB_HIPRI)
– For applications, set only for

preadv2/pwritev2 with RWF_HIPRI flag
– Not related to ioprio_set !

Block layer

3/21/17 8©2017 Western Digital Corporation or its affiliates. All rights reserved.

> cat /sys/block/nvme0n1/queue/io_poll
1

static ssize_t do_iter_readv_writev(struct file *filp, struct iov_iter *iter,
loff_t *ppos, int type, int flags)

{
struct kiocb kiocb;

...
init_sync_kiocb(&kiocb, filp);
if (flags & RWF_HIPRI)

kiocb.ki_flags |= IOCB_HIPRI;
...

if (type == READ)
ret = call_read_iter(filp, &kiocb, iter);

else
ret = call_write_iter(filp, &kiocb, iter);

...
return ret;

}

Linux Block I/O Polling Implementation

• Currently, only NVMe supports I/O
polling
– poll block-mq device operation

• Polling is done on the completion
queue of the hardware queue
context assigned to the calling CPU
– Does not impact other queues assigned to

different CPUs
– Catches all command completions until the

command being polled completes,
including low priority commands

• IRQs are NOT disabled
– ISR is still executed as the device signals

completions
• But ISR sees a completion slot already

processed

NVMe driver

3/21/17 9©2017 Western Digital Corporation or its affiliates. All rights reserved.

static int nvme_poll(struct blk_mq_hw_ctx *hctx, unsigned int tag)
{

struct nvme_queue *nvmeq = hctx->driver_data;

if (nvme_cqe_valid(nvmeq, nvmeq->cq_head, nvmeq->cq_phase)) {
spin_lock_irq(&nvmeq->q_lock);
__nvme_process_cq(nvmeq, &tag);
spin_unlock_irq(&nvmeq->q_lock);

if (tag == -1)
return 1;

}

return 0;
}

static bool __blk_mq_poll(struct blk_mq_hw_ctx *hctx, struct request *rq)
{
...

while (!need_resched()) {
...

ret = q->mq_ops->poll(hctx, rq->tag);
if (ret > 0) {

hctx->poll_success++;
set_current_state(TASK_RUNNING);
return true;

}
...

}

return false;
}

Evaluation Environment

• Latest stable kernel 4.10
– No modifications

• Random 512B direct reads
– Raw block device access from application
– Synchronous read from a single process
• Queue depth 1

• Application process tied to a CPU
– sched_setaffinity / pthread_setaffinity_np
– Avoids latency variation due to process/thread

migration to different CPU

Fast DRAM based NVMe test device

• Standard PC
– Intel(R) Core(TM) i7-4790 CPU @ 3.60GHz
– 32 GB DDR4 RAM

• DRAM based NVMe test device
– PCI-Express Gen2 x 4 interface

3/21/17 10©2017 Western Digital Corporation or its affiliates. All rights reserved.

Evaluation Results: Classic Polling

• 6us average latency with IRQ, 4.5us with
polling
– 25% lower latency with polling
– 166 KIOPS vs 222 KIOPS

• Slightly sharper distribution
– Lower variance

• But 100% load on the polling CPU
– Only 32% CPU load with IRQ model

25% lower latency with polling

3/21/17 11©2017 Western Digital Corporation or its affiliates. All rights reserved.

Improving CPU load: Hybrid Polling

• If the device access time exceeds the IRQ model overhead, sleeping before the I/O
completion will not hurt latency
– But the process must be woken up before the I/O completion, with heads-up time for a context switch

Polling all the time until completion is not efficient

3/21/17 12©2017 Western Digital Corporation or its affiliates. All rights reserved.

Command execution

BIO stacksyscall Device driver Are you done ? BIO stack

Application perceived I/O latency

Classic
Polling

Command execution

BIO stacksyscall Device driver BIO stack
Hybrid
Polling SleepCS CS

ISRTimer IRQ

Wake

CPU load reduction

Linux Block I/O Hybrid Polling Implementation

• Controlled using the io_poll_delay
sysfs file
– -1: classic polling (default)
– 0: adaptive hybrid polling
– <time in ns>: fixed time hybrid polling

• Implemented at the block layer
level, within blk_mq_poll function
– The device driver does not need to have

special support
– For the adaptive mode, polling delay (sleep

time) is set to half the mean device
command service time obtained with
classic polling
• Enabled once command statistics is gathered

Adaptive and fixed time polling

3/21/17 13©2017 Western Digital Corporation or its affiliates. All rights reserved.

> cat /sys/block/nvme0n1/queue/io_poll_delay
-1

static unsigned long blk_mq_poll_nsecs(struct request_queue *q,
struct blk_mq_hw_ctx *hctx,
struct request *rq)

{
...

/*
* As an optimistic guess, use half of the mean service time
* for this type of request. We can (and should) make this smarter.
* For instance, if the completion latencies are tight, we can
* get closer than just half the mean. This is especially
* important on devices where the completion latencies are longer
* than ~10 usec.
*/
if (req_op(rq) == REQ_OP_READ && stat[BLK_STAT_READ].nr_samples)

ret = (stat[BLK_STAT_READ].mean + 1) / 2;
else if (req_op(rq) == REQ_OP_WRITE && stat[BLK_STAT_WRITE].nr_samples)

ret = (stat[BLK_STAT_WRITE].mean + 1) / 2;

return ret;
}

Evaluation Results: Hybrid Polling

• Adaptive hybrid polling results in
an almost identical service time
distribution as classic polling
– Lowest latencies achieved

• Fixed time polling efficiency
directly depends on the sleep time
set
– Best results with polling delay set to half

the command mean service time (~2us)
– Degraded latencies with higher polling

delay (4us)
• Delay still lower than command service time,

but not enough spare time for context switch
and other overhead

– Intermediate delays (3us) fall in
between classic polling and IRQ latencies

Adaptive hybrid polling as efficient as classic polling

3/21/17 14©2017 Western Digital Corporation or its affiliates. All rights reserved.

Evaluation Results: Hybrid Polling

• Adaptive hybrid polling gives the same
average latency of 4.5us as classic polling
– But with only 58% CPU load
– 32% with IRQ model

• Fixed time polling allows controlling the CPU
vs latency trade-off
– IRQ like average latency and CPU load for high polling

delay
• Better use the IRQ model

– Lower CPU loads with a small average latency
degradation achieved with intermediate polling delay

Significant CPU load reduction without average latency degradation

3/21/17 15©2017 Western Digital Corporation or its affiliates. All rights reserved.

Evaluation Results: Hybrid Polling Sleep Time

• Sleep time set to half mean command
service time works well only for constant
I/O size
– With larger I/O sizes, sleep time increases and

small I/O completion do not get caught with
polling
• Back to IRQ model performance

Better sleep time estimate needed

3/21/17 16©2017 Western Digital Corporation or its affiliates. All rights reserved.

Evaluation Results: Latency Exceedance Distribution

• Classic polling is more likely to suffer
from a longer latency distribution tail
than hybrid polling and IRQ
– In average, 1 in ~6,000 I/Os has a latency

larger than IRQ
– Significant difference in maximum latency

with hybrid adaptive polling

• From the scheduler point of view,
classic polling is a CPU intensive
workload
– Not an I/O intensive workload
– Scheduling time slices expire and result in

lower “nice” value for the process
• Preemption, scheduling delays, etc.

– IRQ and hybrid polling benefit from sleeping
• “priority boost” on wake-up

Beware of process scheduling !

3/21/17 17©2017 Western Digital Corporation or its affiliates. All rights reserved.

Evaluation Results: More on Scheduling

• Competing CPU intensive processes
can significantly degrade tail latencies
with classic polling
– Again, not an I/O intensive workload
– In average, very long latency observed for 1

in 5000 I/Os

• Standard solutions work well
– Application running with RT class priority

(SCHED_RR) maintain (or improve) latencies
observed with idle system

• Hybrid polling maintains good results
without scheduling class change
– Scheduling boost on wake up

Process scheduling control matters

3/21/17 18©2017 Western Digital Corporation or its affiliates. All rights reserved.

Can We Do Better ?

• With hardware driven (mostly) context switches overhead out of the way, further
latency reduction can only be achieved with software optimizations
– System call (VFS)
• Optimizations introduced with kernel 4.10

– BIO stack
• blk-mq already very efficient

– Device driver
• NVMe driver submission and completion paths are very short

Software optimization

3/21/17 19©2017 Western Digital Corporation or its affiliates. All rights reserved.

Command execution

BIO stacksyscall Device driver Are you done ? BIO stack

Application perceived I/O latency

Classic
Polling

Kernel 4.10 Optimizations

• Kernel 4.10 introduced new direct I/O code for raw block device accesses
– Optimization for small direct I/Os
• I/O size <= 16KB
• No DIO descriptor, on stack BIO and BIO vectors

– No memory allocation

– 0.3 us lower latency in average
• Compared to kernel 4.9

– Less variation
• Sharper latency distributions, even with IRQ

Optimized small direct I/O accesses for block devices

3/21/17 20©2017 Western Digital Corporation or its affiliates. All rights reserved.

What else ?

• Kernel 4.10 optimizations drastically reduced the amount of code that can be
optimized
– Not much left to work with... It is getting harder !

• More extreme approach has potential: User level drivers
– Remove system call switch overhead
– Simplify block I/O management
• Almost direct access to NVMe

– But looses POSIX interface
• Application rewrite necessary

• Several choices available
– Storage Performance Development Kit (SPDK)
• https://github.com/spdk/spdk

– libnvme (SPDK rewrite to remove DPDK dependencies)
• https://github.com/hgst/libnvme

– User space NVMe Driver (unvme)
• https://github.com/MicronSSD/unvme

Not much left to work with in the kernel

3/21/17 21©2017 Western Digital Corporation or its affiliates. All rights reserved.

Evaluation Results: User Level Driver

• Significant reduction in average
latency with user level drivers
– 3.16us in average
• 47% lower than with IRQ
• 30% lower than kernel classic polling

– Very narrow distribution
– But process scheduling, again, will

significantly matter

• Classic polling tested here gives
100% CPU load
– But adaptive and fixed time hybrid

polling can be tuned per I/O at
application level

Classic polling from application context

3/21/17 22©2017 Western Digital Corporation or its affiliates. All rights reserved.

Conclusion and Next Steps

• Kernel based I/O polling has clear
advantages for latency aware
applications
– Very fast blocks devices
• Nonsensical on slow devices

– Keeps legacy POSIX I/O interface
• As opposed to pure NVM approach

• User level drivers are another solution
for very low latency accesses
– But application modifications necessary

More improvements possible

• Going forward, more can be done
– Polling relation to I/O priority
• application side: ioprio_set
• Device side: NVMe submission queue arbitration

– blk-mq block I/O scheduling
• Work on-going
• Must integrate smoothly polled block I/Os to avoid

gain losses
– And what of NVMe submission queue arbitration ?

– Process scheduler awareness
• Don’t preempt polling ? Treat Polling as I/O

time/sleeping ?
– Further code optimization
• Disable useless interrupts at driver level

– ISR prevents active polling from catching completion of
some commands, or runs for nothing

• Adaptive polling sleep time estimation improvements
– Mean time of command service time as the sleep time

works well only with same sized commands

3/21/17 23©2017 Western Digital Corporation or its affiliates. All rights reserved.

Acknowledgement

• Jens Axboe and Christoph Hellwig for polling implementation and related code
optimization
• Quingbo Wang for building a fast DRAM based NVMe test PCIe card
• Many other in the Kernel development community for their efforts to
constantly improve Linux

3/21/17 24©2017 Western Digital Corporation or its affiliates. All rights reserved.

3/21/17©2017 Western Digital Corporation or its affiliates. All rights reserved.

