
Copyright 2015, Toshiba Corporation.

Kernel security hacking

for the Internet of Things

Daniel Sangorrin

IoT Technology center

Toshiba Corp. Industrial ICT solutions,

Kawasaki city, Kanagawa prefecture (Japan)

E-mail: daniel.sangorrin@toshiba.co.jp

LinuxCon Japan 2015

June 3rd, 2015

Tokyo

improvements

IoT

2
Copyright 2015, Toshiba Corporation.

Kernel security hacking for the IoT

1. Introduction

2. Reducing the attack surface

3. Leveraging determinism

4. Protecting the critical software

5. Conclusions

3
Copyright 2015, Toshiba Corporation.

About me

Real-time embedded systems engineer

üStarted with real-time embedded software and drivers (8 years).

ÁMaRTE OS (Ada95 RTOS), SafeG (ARM Trustzone monitor),

TOPPERS/FMP (Japanese multi-core RTOS).

üNow, mostly customizing Linux for embedded devices (2 years).

ÁYocto-based project: META-DEBIAN (talk on Friday 5th, 16:20h)

ÁLong-term Support Industrial (LTSI) kernels + Real-time patch

Not a security expert

üTrying to catch up with such a broad subject.

Hobbies

üManga, Puramoderu, hiking, futsal, é

4
Copyright 2015, Toshiba Corporation.

Purpose of this talk

Two main purposes

üRaise concern about the security of embedded systems in the IoT.

üShare a few things I learned while investigating Linux security and

encourage you to try and share your own techniques.

Áhttps://github.com/sangorrin/linuxcon-japan-2015

Raspberry Pi

protecting herself

through a Sarashikubi

(gibbeted head) at

MakerFaire

*I wonôt be talking about physical security today

5
Copyright 2015, Toshiba Corporation.

Whatôs (on with) the IoT?

IoT (my simplified definition)

üA distributed computing system consisting of:

ÁEmbedded devices interacting with the physical world (Things)

through sensors and actuatorsé

Áand connected to the cloud (eg: smart servers, PCs, other devices)

through a network (eg: a virtual private network)é

Á in order to solve a problem or offer a service (eg: remote

monitoring and control, optimization, automation, added value).

Data Source: Google Trends (www.google.com/trends)

Interest over time (Japan)

https://support.google.com/trends/answer/www.google.com/trends

6
Copyright 2015, Toshiba Corporation.

Air gaps (the good old? times)

Power
station

embedded
device (DCS)

boiler

firewall

temperature
sensor

Boiler

heater

control centre

<local>

gateway

Not completely secure though

ü Infected USB pendrives (eg: Stuxnet attack)

ü Insider attacks (unhappy employees, bribery, blackmail..)

üAttacks to the source code repositories

üBreaking into local Wifi networks through smartphones

Áor drones!

Thing

Actuator

Embedded
device

7
Copyright 2015, Toshiba Corporation.

Going IoT (energy optimization)

Data Source: Google Trends (www.google.com/trends)

Power
station

boiler

firewall

temperature
sensor

Boiler

heater

Home energy
management
solution

control and
data centre

<remote>
<local>

gateway

Thing

Actuator

Facility-side

User-side

Embedded
device

https://support.google.com/trends/answer/www.google.com/trends

8
Copyright 2015, Toshiba Corporation.

What we want to protect

Information security

üAuthentication, integrity, confidentiality, availability..

Á Identity theft, privacy leaks, falsified energy usage..

Security impact on Safety

üProtect the ñThingsò

ÁNature, human lives, infrastructure, energy, equipment..

Source: US Department of Homeland Security

2007: Attack to the US

power grid (industrial

turbine spinning wildly

out of control)

9
Copyright 2015, Toshiba Corporation.

Facility-side embedded devices

Power
station

embedded
device

boiler

firewall

temperature
sensor

Boiler

heater

control and
data centre

<remote>
<local>

gateway

Thing

Actuator

Facility-side

Requirements

üSafety and high reliability

üReal-time response guarantees

üSoftware certification (tests, formal methods, ..)

üContinuous operation

üFast booting

10
Copyright 2015, Toshiba Corporation.

Practical constraints

Real-time requirements

üWeak to disturbances (DoS attacks)

Updating and re-certifying embedded software is costly

üCertified legacy software (~20 years untouched).

üRebooting can be expensive or dangerous (heating controller)

Fast booting

üDifficult to make it compatible with security booting

Low performance devices

üSome security countermeasures might cause too much overhead

Hardware-assisted security varies with the board

üCortex-M3, Cortex-A9, PPC, SH, x86, x86_64..

11
Copyright 2015, Toshiba Corporation.

(My) Three key security guidelines

1. Reduce the attack surface

üRemove anything that is not used (not just restrict it to root)

üDo you really need the ptrace system call?

Áor the kernel symbols, or modules, or gdbé

2. Leverage the determinism of your system

üLook for anomalies that were supposed not to occur

ÁAllows for security solutions that generalize to many attacks.

üExample

ÁPrevent new processes from being created in a real-time system.

ÁCheck the amount of network connections.

3. Isolate critical software from less trustable software

üReduce the impact of successful attacks

12
Copyright 2015, Toshiba Corporation.

Kernel security hacking for the IoT

1. Introduction

2. Reducing the attack surface

3. Leveraging determinism

4. Protecting the critical software

5. Conclusions

13
Copyright 2015, Toshiba Corporation.

Remove anything unused

My point

üUnused interfaces are often the most vulnerable.

üAttackers usually go for the lower hanging fruit.

Kernel

üSystem calls: ptrace, process_vm_write, iopl, _sysctl é

ÁHarden the needed ones: mprotect (Grsecurity)

ü Information leaks: kallsyms, proc, sys, debugfs, kprobesé

üKernel trojans: /dev/kmem, modules, kexec, ksplice, é

File system customization

üRO filesystem with remounting disabled

üDonôt install tools that are useful for attackers (unless required)

ÁObjdump, perl, apt-get, mkfs, reboot

14
Copyright 2015, Toshiba Corporation.

Use case: removing unused system calls

System calls

üThe Linux kernel source code is complex and grows every minute.

üCommonly used system calls are reasonably secure

ÁExcept those aimed at debugging, such as ptrace

üBut rarely used or recently introduced ones often contain bugs that

may lead to security problems.

applications

Linux

Not used system

calls

15
Copyright 2015, Toshiba Corporation.

How to get rid of them

Step 1: syscall identification

üTracing the application: see ./trace-syscalls.sh

üExtract library calls (see libc-parser.py) and map them to syscalls

ü find-syscalls.py: https://github.com/tbird20d/auto-reduce (by Tim Bird)

Step 2: syscall removal

üModify the kernel system call table (see below).

üKernel tinification: https://tiny.wiki.kernel.org/syscalls

üTim Bird patches: http://elinux.org/System_Size_Auto-Reduction

$ vi arch/x86/syscalls/syscalltbl.sh

- linkat sys_linkat

+ linkat sys_ids_syscall

$ vi hello.c

ret = linkat(AT_FDCWD, ñhacker.txt", AT_FDCWD, ñ/etc/passwd", 0);

if (ret != 0) perror("linkat");

$./hello.exe

linkat: Function not implemented.

The system call was not

executed. Optionally, we

can be stealthy and

return no error

https://github.com/tbird20d/auto-reduce
https://tiny.wiki.kernel.org/syscalls
http://elinux.org/System_Size_Auto-Reduction

16
Copyright 2015, Toshiba Corporation.

Evaluation

Percentage of system call attack surface reduction

üSimple applications such as ólsô or ótcpdumpô only used about 30

unique system calls in average.

üFor x86, which has ~350 system calls, that represents a 91%

reduction of the syscall attack surface.

17
Copyright 2015, Toshiba Corporation.

Using seccom-bpf

Seccom-bpf (SECCOMP_SET_MODE_FILTER)

struct sock_filter filter[] = {

ALLOW_SYSCALL(rt_sigreturn),

ALLOW_SYSCALL(exit),

ALLOW_SYSCALL(read),

ALLOW_SYSCALL(write),

ALLOW_SYSCALL(close),

...

};

struct sock_fprog prog = {

.len = (unsigned short)(sizeof(filter)/sizeof(filter[0])),

.filter = filter,

};

prctl(PR_SET_NO_NEW_PRIVS, 1, 0, 0, 0)

prctl(PR_SET_SECCOMP, SECCOMP_MODE_FILTER, &prog)

ret = syscall(69);

printf ("should not arrive here \ n");

application A

Linux

application B System calls not used

by the system
System calls disabled

per application

See bpf_syscall_error.c

18
Copyright 2015, Toshiba Corporation.

There is more information we can use

Firefox (complex application)

ü Note that the frequency depends greatly of the system call executed. This

and other information can be used to refine the mechanism furthermore.

19
Copyright 2015, Toshiba Corporation.

Kernel security hacking for the IoT

1. Introduction

2. Reducing the attack surface

3. Leveraging determinism

4. Protecting the critical software

5. Conclusions

20
Copyright 2015, Toshiba Corporation.

Overview

üLeverage the determinism of your embedded systems

ÁDetect anomalies that divert from expected behavior

What determinism?

üTask periods, maximum IRQs/s, taskôs CPU timeper period

üDevice accesses: timing, order, allowed tasks

üFixed number of processes

üProcess sectionsô (text, GOT table) hashes

üFiles accessed by each application

üProcesses crashes shouldnôt happen

üNetwork: connections, packet patterns, packet sizes..

Anomaly-based intrusion detection/prevention

21
Copyright 2015, Toshiba Corporation.

HIDS: Host-based intrusion detection systems

Syscall-based HIDS

üTrack the execution of the system calls used by an application

ÁLook for anomalies (eg syscall order, arguments, timing)

ÁSmall bound CPU overhead expected on the target application

1: open()

2: read()

3: setreuid()

4: mmap()

5: open()

6: write()

7: mmap()

1: open()

2: read()

3: setreuid()

4: mmap()

5: open()

6: write()

7: mmap()

3: mprotect()

4: mmap()

5: write()

Normal execution

sequence
Execution sequence after

a stack overflow or ROP

attack

Stack

overflow

22
Copyright 2015, Toshiba Corporation.

System call monitor (proof of concept)

Extraction

phase

Initialization

phase

Execution

phase

Anomaly

detected

Extract the system

call sequence of the

target application

Set up the security

settings when

starting the target

application

When an

unexpected system

call occurs,

communicate it to

the Audit subsystem

and kill the app or

change it to fail safe

mode

Check that the target application

doesnôt try to execute an

unexpected system call

./ trace - syscalls.sh \
command <args>

Uses the same

interface as

seccomp

sequence

23
Copyright 2015, Toshiba Corporation.

Execution phase

Monitoring

ü During execution the system calls called by the target application need to be

checked. This task is performed inside the kernel.

Á See 0002-syscall-hids-proof-of-concept-version-of-a-syscall-h.patch

entry_32.S:s

yscall ioctl

syscall_trace

_enter()
__secure_computing()

Previous syscall Next possible syscalls

epoll_wait ioctl socketcall read

sendfile64 close time epoll_ctl

setsockopt ioctl fcntl64

syscall = ioctl

system call trap

vector for x86 arch

prev_syscall = setsockopt

check that the system

call execution order is

as expected

stub function shared

With seccomp

syscall table

since the previous call was

ósetsockoptô, the óioctlô is

allowed execution

