
Copyright©2015 NTT Corp. All Rights Reserved.

A Tracing Technique
for Understanding the Behavior
of Large-Scale Distributed Systems

Yuichi Bando
NTT Software Innovation Center

2Copyright©2015 NTT Corp. All Rights Reserved.

• Research engineer at NTT Software
Innovation Center (SIC)

• SIC is developing open source cloud platforms and
promoting collaborative service development with NTT
operating companies

• working on techniques for improving
reliability of distributed systems such as

• Sheepdog (scale out storage system)

• OpenStack Swift (object storage system)

Who am I ?

3Copyright©2015 NTT Corp. All Rights Reserved.

1. Background

2. Introduction to distributed tracing

3. Adding trace feature to Eventlet

4. Demo with OpenStack Swift

5. Evaluation

Agenda

4Copyright©2015 NTT Corp. All Rights Reserved.

• Finding performance bottlenecks in modern
large-scale distributed systems is difficult

Background

e.g.) OpenStack Architecture
http://docs.openstack.org/training-guides/content/

module001-ch004-openstack-architecture.html

Where is a
bottleneck ?

5Copyright©2015 NTT Corp. All Rights Reserved.

• There are several useful tracing tools for
stand-alone systems

• ftrace: tracing tool for the Linux Kernel

• LTTng: tracing tool for the Linux Kernel and applications

• However, such tools are not enough for
distributed systems

• cannot trace actions and interactions of hundreds of
components located on many different machines

How should we find bottlenecks?

6Copyright©2015 NTT Corp. All Rights Reserved.

• Distributed Tracing

• performance profiling method for finding bottlenecks of
complex distributed systems

• gather cluster-wide timing data

• extract the causal relationships among RPCs

How should we find bottlenecks?

time

Frontend

Backend1

Backend 2 Backend 3

3000ms

2700ms

500ms 2000ms

RPC

RPC RPC

found !

Example of distributed tracing

Today’s topic

7Copyright©2015 NTT Corp. All Rights Reserved.

1. Background

2. Introduction to distributed tracing

3. Adding trace feature to Eventlet

4. Demo with OpenStack Swift

5. Evaluation

Agenda

8Copyright©2015 NTT Corp. All Rights Reserved.

Focus in this talk

Black-box
based
approach

Project5 [1], WAP5 [2]
✔ higher degree of app-level transparency
x some amount of imprecision and possibly larger overheads

Explicit
annotation-
based
approach

✔ deeper understanding of process flow
x need for trace targets to be modified

X-Trace [3] comprehensive modifications (client, server,
NW devices)

Google
Dapper [4]

only limited modification (common RPC library)

Twitter
Zipkin [5]

only limited modification (common RPC library)
OSS implementation based on Dapper

[1] Aguilera et al. SOSP ’03

[2] http://googleblog.blogspot.com/2008/04/developersstart-your-engines.html

[3] Fonseca et al. NSDI ’07

[4] http://research.google.com/pubs/pub36356.html

[5] https://github.com/twitter/zipkin

Approaches of distributed tracing

http://googleblog.blogspot.com/2008/04/developersstart-your-engines.html
http://research.google.com/pubs/pub36356.html
https://github.com/twitter/zipkin

9Copyright©2015 NTT Corp. All Rights Reserved.

What’s Zipkin ?

• Zipkin is a distributed tracing framework
which helps us collect and visualize trace data

Collector
Web

UI

4. query
Storage

3. store

Trace targets Zipkin (OSS)

2. send data

1. generate

trace data

Scribe
logging daemon developed

by Facebook (OSS)

Architecture of Zipkin tracing

10Copyright©2015 NTT Corp. All Rights Reserved.

What’s Zipkin ?

Services

Span of an RPC

Web UI of Zipkin

11Copyright©2015 NTT Corp. All Rights Reserved.

• RPC timing info of every task

• Timestamp of when a service sends a request or receives
a response

• A few unique IDs

• traceId: identifies a request

• spanId: identifies a span of the request

• A span represents one specific RPC call

• parentId: identifies the parent span

Trace data for Zipkin

Note: Zipkin does NOT require high-precision timestamp since
pairs of spanId and parentId give causal relationships among RPCs

12Copyright©2015 NTT Corp. All Rights Reserved.

Example: propagation of IDs

time

Frontend

Backend 1

Backend 2 Backend 3

100, 40

100, 56 100, 56

Span Temporary storage

(Data is temporarily cached in memory)
RPC

• traceId and spanId are passed to
downstream servers along with RPC

traceId=100
spanId=56

parentId=40

create new IDs

traceId=100
spanId=40

traceId=100
spanId=30

parentId=56

traceId=100
spanId=19

parentId=56

13Copyright©2015 NTT Corp. All Rights Reserved.

Web UI of Zipkin

Levels of nesting represent

hierarchical relationships among RPCs

Latency breakdown of upper level service

14Copyright©2015 NTT Corp. All Rights Reserved.

• Middleware such as RPC Library needs to
generate trace data

• Some libraries already support Zipkin tracing

• Finagle: Asynchronous network stack for JVM [1]

• Twisted: Python event-driven networking engine [2]

• Django: Python web framework [3]

• Libraries that support Zipkin are, however, still limited

• Not available for popular cloud platforms such as
OpenStack

• Need to expand its support to key OSS libraries
toward wide adoption of "tracing"

How can we start Zipkin tracing ?

[1] https://github.com/twitter/finagle/tree/master/finagle-zipkin

[2] https://github.com/racker/tryfer

[3] https://github.com/prezi/django-zipkin

https://github.com/twitter/finagle/tree/master/finagle-zipkin
https://github.com/racker/tryfer
https://github.com/prezi/django-zipkin

15Copyright©2015 NTT Corp. All Rights Reserved.

1. Background

2. Introduction to distributed tracing

3. Adding trace feature to Eventlet

4. Demo with OpenStack Swift

5. Evaluation

Agenda

16Copyright©2015 NTT Corp. All Rights Reserved.

• A popular Python networking library [1]
• over 2.5M downloads from PyPI

• widely used in OpenStack project
• Compute (Nova)

• Identity (Keystone)

• Image Service (Glance)

• Networking (Neutron)

• Block Storage (Cinder)

• Object Storage (Swift) etc…

What’s Eventlet?

[1] http://eventlet.net/

http://eventlet.net/

17Copyright©2015 NTT Corp. All Rights Reserved.

• We implemented trace feature to Eventlet

• Scope

• Eventlet/WSGI applications which use HTTP for internal
communications

• OpenStack Swift is an example

• Some OpenStack components also use AMQP, but it's not
supported

• Hybrid protocol support is a future work

Tracing WSGI applications
using Eventlet

WSGI : Web Server Gateway Interface

AMQP: Advanced Message Queuing Protocol

18Copyright©2015 NTT Corp. All Rights Reserved.

• To capture causal relationships of spans, our
patch propagates IDs via HTTP headers

Implementation to Eventlet

FrontendUser
request HTTP HTTP

・・・

trace points

Backend

if HTTP headers do NOT contain IDs:
generate traceId, spanId

else:
extract IDs from headers

・・existing code

put IDs to HTTP headers
・・existing code

eventlet.green.httplib.HTTPConnection.endheaders()

eventlet.wsgi.HttpProtocol.handle_one_request()

traceId, spanId

The point where Eventlet receives a request

The point where Eventlet sends a request

19Copyright©2015 NTT Corp. All Rights Reserved.

• We used monkey patching technique to insert
code for tracing

• No modification to original code

• We override two methods (listed in previous page)

Implementation to Eventlet

e.g.) Monkey patch to endheaders()

from eventlet.green.httplib import HTTPConnection

org_endheaders = HTTPConnection.endheaders

def my_endheaders(self):

put IDs to HTTP headers #code for tracing
org_endheaders(self) #original one

HTTPConnection.endheaders = my_endheaders #override

20Copyright©2015 NTT Corp. All Rights Reserved.

• Add two lines to your application to start
tracing

• Optionally set sampling rate for reducing
overhead

• if sampling_rate=1.0, all requests will be traced

• if sampling_rate=0.1, only 1/10 requests will be traced

How to use

from eventlet.zipkin import patcher

patcher.enable_trace_patch(sampling_rate=0.1)

module which we added

21Copyright©2015 NTT Corp. All Rights Reserved.

• We first proposed this distributed tracing idea
and Eventlet maintainer agreed with it [1]

• We proposed the patch [2], and it is planned to
be merged in Eventlet v0.18

• May 9, 2015: v0.17.4 (latest release)

Current status

[1] https://lists.secondlife.com/pipermail/eventletdev/2015-February/001205.html

[2] https://github.com/eventlet/eventlet/pull/218

https://lists.secondlife.com/pipermail/eventletdev/2015-February/001205.html
https://github.com/eventlet/eventlet/pull/218

22Copyright©2015 NTT Corp. All Rights Reserved.

1. Background

2. Introduction to distributed tracing

3. Adding trace feature to Eventlet

4. Demo with OpenStack Swift

5. Evaluation

Agenda

23Copyright©2015 NTT Corp. All Rights Reserved.

• A distributed object storage system

• implemented as Eventlet/WSGI application

• uses HTTP for internal communications

What’s Swift?

Client

REST API

(PUT/GET/DEL)

Proxy

Storage node

account

container

object

Storage node

account

container

object

Storage node

account

container

object

・・・

REST
REST

REST

Proxy: request routing

Account: handles listing of containers

Container: handles listing of objects

Object: stores objects (has 3 replicas)

24Copyright©2015 NTT Corp. All Rights Reserved.

Demo

CUI client

Swift storage

Zipkin collector
and GUI

Swift storage Swift storage

Swift proxy
and storage

VM

PUT, GET

trace data

• Tracing Swift with patched Eventlet

VM on my laptop

emulates a four node

Swift cluster

25Copyright©2015 NTT Corp. All Rights Reserved.

1. Background

2. Introduction to distributed tracing

3. Trace feature enhancement to
Eventlet/WSGI

4. Demo with OpenStack Swift

5. Evaluation

Agenda

26Copyright©2015 NTT Corp. All Rights Reserved.

• Tracing overhead

• Impact on Swift throughputs (PUT/GET/DEL)

• Impact on resource usage (CPU,MEM,NW)

What we measure

27Copyright©2015 NTT Corp. All Rights Reserved.

• 1 swift-bench

• # of request: 10000 PUT/GET/DEL

• object size: 4 KB*

• concurrency: 10

• 4 node Swift cluster

• Fluend is used as logger

• 1 Zipkin collector
• with SQLite

Environment

swift-bench
(client)

Swift storage

Zipkin collector

Swift storage Swift storage

Swift proxy
and storage

SQLite

trace data

Each component ran on

separated physical machine

* Setting small object size will highlight

the overhead since each request will

be lightweight

28Copyright©2015 NTT Corp. All Rights Reserved.

101.9
96 97.1 97.5

101.6

0

20

40

60

80

100

120

OFF 1/1 1/4 1/16 1/1024

Tr
an

sa
ct

io
n

s/
s

sampling rate

- 5.8 % - 4.7 % - 4.3 %
- 0.3 %

Trace

OFF

Impact on Swift throughput (PUT)

Lowering sampling rate
reduces overhead

29Copyright©2015 NTT Corp. All Rights Reserved.

Impact on Swift throughput (GET)

336.5

304
328.1 325 326.1

0

50

100

150

200

250

300

350

400

OFF 1/1 1/4 1/16 1/1024

Tr
an

sa
ct

io
n

s/
s

sampling rate

Trace

OFF

- 9.7 %
- 2.5 % - 3.4 % - 3.1 %

30Copyright©2015 NTT Corp. All Rights Reserved.

Impact on Swift throughput (DEL)

175.8

161.6 162.9 167.2 169.5

0

20

40

60

80

100

120

140

160

180

200

OFF 1/1 1/4 1/16 1/1024

Tr
an

sa
ct

io
n

s/
s

sampling rate

Trace

OFF

- 8.0 % - 7.3 % - 4.9 % - 3.6 %

31Copyright©2015 NTT Corp. All Rights Reserved.

Impact on resource usage
of Swift cluster

Sampling
rate

Avg.
CPU Usage
(% change)

Avg.
MEM Usage
(% change)

Avg.
NW write rate
(% change)

Trace
OFF

1/1 0.95 % 1.2 %
(+ 27 MB)

16.8 %
(+ 303 KB/s)

1/4 0.39 % - 0.038 % 4.1 %

1/16 0.23 % - 0.31 % 0.34 %

1/1024 0.11 % - 0.11 % - 1.3 %

* some negative numbers

due to experimental error

/

32Copyright©2015 NTT Corp. All Rights Reserved.

• Even in the worst case (rate=1/1), decrease
in application throughput is less than 10%

• Though tracking all requests consumes some amount of
NW bandwidth, it is acceptable for debugging or lower
traffic services

• In addition, low sampling rate is enough for
analyzing the tendency of performance

• In Dapper paper, Google reported

• “In practice, we have found that there is still an adequate
amount of trace data for high-volume services when using
a sampling rate as low as 1/1024”

Discussion

http://research.google.com/pubs/archive/36356.pdf

33Copyright©2015 NTT Corp. All Rights Reserved.

• Distributed tracing gives a practical way to
find bottlenecks in distributed systems

• Our patch to Eventlet will help you understand
WSGI-based distributed systems (e.g. Swift)
even if you are not familiar with the interior

• low overhead

• useful for both debugging and monitoring

Conclusion

If you have a similar issue with a distributed system, try Zipkin !
Even if your networking library is not Zipkin compliant,
our patch will be a useful reference to modify it.

34Copyright©2015 NTT Corp. All Rights Reserved.

Thanks a lot for your kind attention !

Any questions ?

35Copyright©2015 NTT Corp. All Rights Reserved.

36Copyright©2015 NTT Corp. All Rights Reserved.

APPENDIX

37Copyright©2015 NTT Corp. All Rights Reserved.

• Annotation API

• Add your own additional info for deeper understanding

• from anywhere in your code

Out patch: other option 1

from eventlet.zipkin import api

api.put_annotation(‘Your own message')
api.put_key_value('key', 'value')

38Copyright©2015 NTT Corp. All Rights Reserved.

Out patch: other option 1

Key-value has no time component Annotation is recorded with timestamp

api.put_key_value() api.put_annotation()

39Copyright©2015 NTT Corp. All Rights Reserved.

• Application Log Tracing

• Add application log as annotations for deeper
understanding

Out patch: other option 2

from eventlet.zipkin import patcher

patcher.enable_trace_patch(trace_app_log=True)

* Assume that target application uses

python standard logging library

40Copyright©2015 NTT Corp. All Rights Reserved.

Out patch: other option 2

Captured swift log

41Copyright©2015 NTT Corp. All Rights Reserved.

DEMO: screen shot

Trace Swift PUT request

42Copyright©2015 NTT Corp. All Rights Reserved.

DEMO: screen shot

Trace Swift GET request

43Copyright©2015 NTT Corp. All Rights Reserved.

DEMO: screen shot

Detailed information view

44Copyright©2015 NTT Corp. All Rights Reserved.

Evaluation: Software version

Swift 2.0.0

Swift-bench 1.0

Eventlet 0.17.1

Fluentd 0.10.61

Zipkin 1.1.0

45Copyright©2015 NTT Corp. All Rights Reserved.

Evaluation: swift-bench.conf

[bench]
auth = http://swift_proxy_ip:8080/auth/v1.0
user = test:tester
key = testing

concurrency = 10
object_size = 4096

#Number of objects to PUT
num_objects = 10000

#Number of GET operations to perform
num_gets = 10000

#Number of containers to distribute objects among
num_containers = 20

46Copyright©2015 NTT Corp. All Rights Reserved.

Evaluation: td-agent.conf (Fluentd)

in_scribe
<source>

type scribe
port 9999

</source>

out_scribe
<match zipkin.**>

type scribe
host zipkin_collector_ip
port 9410
flush_interval 60s

</match>

47Copyright©2015 NTT Corp. All Rights Reserved.

$ git clone https://github.com/twitter/zipkin.git

$ cd zipkin

Open 3 terminals

(terminal1) $ bin/collector

(terminal2) $ bin/query

(terminal3) $ bin/web

Evaluation: Zipkin configuration

48Copyright©2015 NTT Corp. All Rights Reserved.

• Note: This result is an example since data
size is dependent on each service

• How many RPCs does your service issue ?

• How many annotations do you add ?

Evaluation:
Size of trace data per request

1 PUT 1 GET 1 DEL

Size of trace
data (Bytes) 4096 1024 4096

* The size is measured from zipkin/zipkin.db

* Core annotations and http.uri annotation are traced

