
systemd in Containers

Tokyo, Japan

June 2015

systemd in Containers



Containers

Docker, Rocket, LXC, libvirt-lxc, OpenVZ, . . .

systemd-nspawn + systemd-machined + systemd-importd

systemd in Containers



Containers

Docker, Rocket, LXC, libvirt-lxc, OpenVZ, . . .

systemd-nspawn + systemd-machined + systemd-importd

systemd in Containers



Containers

Docker, Rocket, LXC, libvirt-lxc, OpenVZ, . . .

systemd-nspawn +

systemd-machined + systemd-importd

systemd in Containers



Containers

Docker, Rocket, LXC, libvirt-lxc, OpenVZ, . . .

systemd-nspawn + systemd-machined +

systemd-importd

systemd in Containers



Containers

Docker, Rocket, LXC, libvirt-lxc, OpenVZ, . . .

systemd-nspawn + systemd-machined + systemd-importd

systemd in Containers



Containers as a part of the OS concept itself

Inspiration: Solaris Zones

OS running inside the container similar to OS outside of the
container

“Integrated Isolation”

Features that container systems provide, should also be available
on the host system

systemd in Containers



Containers as a part of the OS concept itself

Inspiration: Solaris Zones

OS running inside the container similar to OS outside of the
container

“Integrated Isolation”

Features that container systems provide, should also be available
on the host system

systemd in Containers



Containers as a part of the OS concept itself

Inspiration: Solaris Zones

OS running inside the container similar to OS outside of the
container

“Integrated Isolation”

Features that container systems provide, should also be available
on the host system

systemd in Containers



Containers as a part of the OS concept itself

Inspiration: Solaris Zones

OS running inside the container similar to OS outside of the
container

“Integrated Isolation”

Features that container systems provide, should also be available
on the host system

systemd in Containers



Containers as a part of the OS concept itself

Inspiration: Solaris Zones

OS running inside the container similar to OS outside of the
container

“Integrated Isolation”

Features that container systems provide, should also be available
on the host system

systemd in Containers



Minimal

Focus is on getting the low-level parts right

No hacks! Clean, integrated implementation matters for us

btrfs, no LVM

Defined execution environment that is close to what we expect for
the host OS

Open doors for alternatives

systemd in Containers



Minimal

Focus is on getting the low-level parts right

No hacks! Clean, integrated implementation matters for us

btrfs, no LVM

Defined execution environment that is close to what we expect for
the host OS

Open doors for alternatives

systemd in Containers



Minimal

Focus is on getting the low-level parts right

No hacks! Clean, integrated implementation matters for us

btrfs, no LVM

Defined execution environment that is close to what we expect for
the host OS

Open doors for alternatives

systemd in Containers



Minimal

Focus is on getting the low-level parts right

No hacks! Clean, integrated implementation matters for us

btrfs, no LVM

Defined execution environment that is close to what we expect for
the host OS

Open doors for alternatives

systemd in Containers



Minimal

Focus is on getting the low-level parts right

No hacks! Clean, integrated implementation matters for us

btrfs, no LVM

Defined execution environment that is close to what we expect for
the host OS

Open doors for alternatives

systemd in Containers



Minimal

Focus is on getting the low-level parts right

No hacks! Clean, integrated implementation matters for us

btrfs, no LVM

Defined execution environment that is close to what we expect for
the host OS

Open doors for alternatives

systemd in Containers



Avoid defining new standards where there already are standards

We test systemd itself daily in a container. In fact, we test it more
often in a container than on bare metal

Cluster-wide orchestration is not the focus – But it makes sense to
built it on top

Rocket makes use of nspawn for the actual containerization

systemd in Containers



Avoid defining new standards where there already are standards

We test systemd itself daily in a container. In fact, we test it more
often in a container than on bare metal

Cluster-wide orchestration is not the focus – But it makes sense to
built it on top

Rocket makes use of nspawn for the actual containerization

systemd in Containers



Avoid defining new standards where there already are standards

We test systemd itself daily in a container. In fact, we test it more
often in a container than on bare metal

Cluster-wide orchestration is not the focus

– But it makes sense to
built it on top

Rocket makes use of nspawn for the actual containerization

systemd in Containers



Avoid defining new standards where there already are standards

We test systemd itself daily in a container. In fact, we test it more
often in a container than on bare metal

Cluster-wide orchestration is not the focus – But it makes sense to
built it on top

Rocket makes use of nspawn for the actual containerization

systemd in Containers



Avoid defining new standards where there already are standards

We test systemd itself daily in a container. In fact, we test it more
often in a container than on bare metal

Cluster-wide orchestration is not the focus – But it makes sense to
built it on top

Rocket makes use of nspawn for the actual containerization

systemd in Containers



machinectl + systemd-machined

Any container or VM manager can register its machines with it

Integration with systemctl -M, systemctl -r, systemctl
list-machines, loginctl -M, journalctl -M, journalctl -m, . . .

Integration with ps, gnome-system-monitor, . . .

systemd-run -M, machinectl login, machinectl stop, . . .

Automatic host name resolution (using nss-mycontainers)

sd-bus D-Bus API is container-aware

systemd in Containers



machinectl + systemd-machined

Any container or VM manager can register its machines with it

Integration with systemctl -M, systemctl -r, systemctl
list-machines, loginctl -M, journalctl -M, journalctl -m, . . .

Integration with ps, gnome-system-monitor, . . .

systemd-run -M, machinectl login, machinectl stop, . . .

Automatic host name resolution (using nss-mycontainers)

sd-bus D-Bus API is container-aware

systemd in Containers



machinectl + systemd-machined

Any container or VM manager can register its machines with it

Integration with systemctl -M, systemctl -r, systemctl
list-machines, loginctl -M, journalctl -M, journalctl -m, . . .

Integration with ps, gnome-system-monitor, . . .

systemd-run -M, machinectl login, machinectl stop, . . .

Automatic host name resolution (using nss-mycontainers)

sd-bus D-Bus API is container-aware

systemd in Containers



machinectl + systemd-machined

Any container or VM manager can register its machines with it

Integration with systemctl -M, systemctl -r, systemctl
list-machines, loginctl -M, journalctl -M, journalctl -m, . . .

Integration with ps, gnome-system-monitor, . . .

systemd-run -M, machinectl login, machinectl stop, . . .

Automatic host name resolution (using nss-mycontainers)

sd-bus D-Bus API is container-aware

systemd in Containers



machinectl + systemd-machined

Any container or VM manager can register its machines with it

Integration with systemctl -M, systemctl -r, systemctl
list-machines, loginctl -M, journalctl -M, journalctl -m, . . .

Integration with ps, gnome-system-monitor, . . .

systemd-run -M, machinectl login, machinectl stop, . . .

Automatic host name resolution (using nss-mycontainers)

sd-bus D-Bus API is container-aware

systemd in Containers



machinectl + systemd-machined

Any container or VM manager can register its machines with it

Integration with systemctl -M, systemctl -r, systemctl
list-machines, loginctl -M, journalctl -M, journalctl -m, . . .

Integration with ps, gnome-system-monitor, . . .

systemd-run -M, machinectl login, machinectl stop, . . .

Automatic host name resolution (using nss-mycontainers)

sd-bus D-Bus API is container-aware

systemd in Containers



machinectl + systemd-machined

Any container or VM manager can register its machines with it

Integration with systemctl -M, systemctl -r, systemctl
list-machines, loginctl -M, journalctl -M, journalctl -m, . . .

Integration with ps, gnome-system-monitor, . . .

systemd-run -M, machinectl login, machinectl stop, . . .

Automatic host name resolution (using nss-mycontainers)

sd-bus D-Bus API is container-aware

systemd in Containers



systemd-nspawn

Minimal container manager, integrates with systemd-machined

You pass it a directory, and it will boot it

Preferred container directory is /var/lib/machines

Also, disassembles GPT partition tables, and boots raw disks

Container-as-a-service, literally: systemd-nspawn@.service

Resource Management like for normal services: systemctl
set-propery systemd-nspawn@foobar.service CPUShares=100

systemd in Containers



systemd-nspawn

Minimal container manager, integrates with systemd-machined

You pass it a directory, and it will boot it

Preferred container directory is /var/lib/machines

Also, disassembles GPT partition tables, and boots raw disks

Container-as-a-service, literally: systemd-nspawn@.service

Resource Management like for normal services: systemctl
set-propery systemd-nspawn@foobar.service CPUShares=100

systemd in Containers



systemd-nspawn

Minimal container manager, integrates with systemd-machined

You pass it a directory, and it will boot it

Preferred container directory is /var/lib/machines

Also, disassembles GPT partition tables, and boots raw disks

Container-as-a-service, literally: systemd-nspawn@.service

Resource Management like for normal services: systemctl
set-propery systemd-nspawn@foobar.service CPUShares=100

systemd in Containers



systemd-nspawn

Minimal container manager, integrates with systemd-machined

You pass it a directory, and it will boot it

Preferred container directory is /var/lib/machines

Also, disassembles GPT partition tables, and boots raw disks

Container-as-a-service, literally: systemd-nspawn@.service

Resource Management like for normal services: systemctl
set-propery systemd-nspawn@foobar.service CPUShares=100

systemd in Containers



systemd-nspawn

Minimal container manager, integrates with systemd-machined

You pass it a directory, and it will boot it

Preferred container directory is /var/lib/machines

Also, disassembles GPT partition tables, and boots raw disks

Container-as-a-service, literally: systemd-nspawn@.service

Resource Management like for normal services: systemctl
set-propery systemd-nspawn@foobar.service CPUShares=100

systemd in Containers



systemd-nspawn

Minimal container manager, integrates with systemd-machined

You pass it a directory, and it will boot it

Preferred container directory is /var/lib/machines

Also, disassembles GPT partition tables, and boots raw disks

Container-as-a-service

, literally: systemd-nspawn@.service

Resource Management like for normal services: systemctl
set-propery systemd-nspawn@foobar.service CPUShares=100

systemd in Containers



systemd-nspawn

Minimal container manager, integrates with systemd-machined

You pass it a directory, and it will boot it

Preferred container directory is /var/lib/machines

Also, disassembles GPT partition tables, and boots raw disks

Container-as-a-service, literally: systemd-nspawn@.service

Resource Management like for normal services: systemctl
set-propery systemd-nspawn@foobar.service CPUShares=100

systemd in Containers



systemd-nspawn

Minimal container manager, integrates with systemd-machined

You pass it a directory, and it will boot it

Preferred container directory is /var/lib/machines

Also, disassembles GPT partition tables, and boots raw disks

Container-as-a-service, literally: systemd-nspawn@.service

Resource Management like for normal services: systemctl
set-propery systemd-nspawn@foobar.service CPUShares=100

systemd in Containers



systemd-networkd

Container support by default:

When run on host, when a new veth tunnel to a container appears,
automatically picks an unused IP range for it, and runs a DHCP

server on it, as well as IPv4LL, configure IP Masquerading.

When run in container, and it sees a tunnel to the host,
automatically runs a DHCP client on it, as well as IPv4LL.

systemd in Containers



systemd-networkd

Container support by default:

When run on host, when a new veth tunnel to a container appears,
automatically picks an unused IP range for it, and runs a DHCP

server on it, as well as IPv4LL, configure IP Masquerading.

When run in container, and it sees a tunnel to the host,
automatically runs a DHCP client on it, as well as IPv4LL.

systemd in Containers



systemd-networkd

Container support by default:

When run on host, when a new veth tunnel to a container appears,
automatically picks an unused IP range for it, and runs a DHCP

server on it, as well as IPv4LL, configure IP Masquerading.

When run in container, and it sees a tunnel to the host,
automatically runs a DHCP client on it, as well as IPv4LL.

systemd in Containers



systemd-networkd

Container support by default:

When run on host, when a new veth tunnel to a container appears,
automatically picks an unused IP range for it, and runs a DHCP

server on it, as well as IPv4LL, configure IP Masquerading.

When run in container, and it sees a tunnel to the host,
automatically runs a DHCP client on it, as well as IPv4LL.

systemd in Containers



systemd-resolved

Register host name by default via LLMNR, regardless if run in
container or host.

LLMNR name lookups by default

systemd-networkd + systemd-resolved in container and on host:
connectivity just works, with name resolution both ways.

systemd in Containers



systemd-resolved

Register host name by default via LLMNR, regardless if run in
container or host.

LLMNR name lookups by default

systemd-networkd + systemd-resolved in container and on host:
connectivity just works, with name resolution both ways.

systemd in Containers



systemd-resolved

Register host name by default via LLMNR, regardless if run in
container or host.

LLMNR name lookups by default

systemd-networkd + systemd-resolved in container and on host:
connectivity just works, with name resolution both ways.

systemd in Containers



systemd-resolved

Register host name by default via LLMNR, regardless if run in
container or host.

LLMNR name lookups by default

systemd-networkd + systemd-resolved in container and on host:
connectivity just works, with name resolution both ways.

systemd in Containers



systemd-importd

Import container images from the Internet or locally, export them
locally.

Formats: .tar or .raw (also, import-only: dkr)

machinectl pull-raw –verify=no http://ftp.halifax.rwth-
aachen.de/fedora/linux/releases/21/Cloud/Images/x86 64/Fedora-

Cloud-Base-20141203-21.x86 64.raw.xz

systemd-nspawn -M Fedora-Cloud-Base-20141203-21

systemd in Containers



systemd-importd

Import container images from the Internet or locally, export them
locally.

Formats: .tar or .raw (also, import-only: dkr)

machinectl pull-raw –verify=no http://ftp.halifax.rwth-
aachen.de/fedora/linux/releases/21/Cloud/Images/x86 64/Fedora-

Cloud-Base-20141203-21.x86 64.raw.xz

systemd-nspawn -M Fedora-Cloud-Base-20141203-21

systemd in Containers



systemd-importd

Import container images from the Internet or locally, export them
locally.

Formats: .tar or .raw (also, import-only: dkr)

machinectl pull-raw –verify=no http://ftp.halifax.rwth-
aachen.de/fedora/linux/releases/21/Cloud/Images/x86 64/Fedora-

Cloud-Base-20141203-21.x86 64.raw.xz

systemd-nspawn -M Fedora-Cloud-Base-20141203-21

systemd in Containers



systemd-importd

Import container images from the Internet or locally, export them
locally.

Formats: .tar or .raw (also, import-only: dkr)

machinectl pull-raw –verify=no http://ftp.halifax.rwth-
aachen.de/fedora/linux/releases/21/Cloud/Images/x86 64/Fedora-

Cloud-Base-20141203-21.x86 64.raw.xz

systemd-nspawn -M Fedora-Cloud-Base-20141203-21

systemd in Containers



systemd-importd

Import container images from the Internet or locally, export them
locally.

Formats: .tar or .raw (also, import-only: dkr)

machinectl pull-raw –verify=no http://ftp.halifax.rwth-
aachen.de/fedora/linux/releases/21/Cloud/Images/x86 64/Fedora-

Cloud-Base-20141203-21.x86 64.raw.xz

systemd-nspawn -M Fedora-Cloud-Base-20141203-21

systemd in Containers



Stateless Systems:

Make /usr sufficient to boot up system

Boot once with empty /etc and/or /var for factory reset

Boot each time with empty /etc and/or /var for stateless systems

Mount the same /usr into many systems, for golden master
systems, with central updating

systemd-nspawn –volatile=

systemd in Containers



Stateless Systems:

Make /usr sufficient to boot up system

Boot once with empty /etc and/or /var for factory reset

Boot each time with empty /etc and/or /var for stateless systems

Mount the same /usr into many systems, for golden master
systems, with central updating

systemd-nspawn –volatile=

systemd in Containers



Stateless Systems:

Make /usr sufficient to boot up system

Boot once with empty /etc and/or /var for factory reset

Boot each time with empty /etc and/or /var for stateless systems

Mount the same /usr into many systems, for golden master
systems, with central updating

systemd-nspawn –volatile=

systemd in Containers



Stateless Systems:

Make /usr sufficient to boot up system

Boot once with empty /etc and/or /var for factory reset

Boot each time with empty /etc and/or /var for stateless systems

Mount the same /usr into many systems, for golden master
systems, with central updating

systemd-nspawn –volatile=

systemd in Containers



Stateless Systems:

Make /usr sufficient to boot up system

Boot once with empty /etc and/or /var for factory reset

Boot each time with empty /etc and/or /var for stateless systems

Mount the same /usr into many systems, for golden master
systems, with central updating

systemd-nspawn –volatile=

systemd in Containers



Stateless Systems:

Make /usr sufficient to boot up system

Boot once with empty /etc and/or /var for factory reset

Boot each time with empty /etc and/or /var for stateless systems

Mount the same /usr into many systems, for golden master
systems, with central updating

systemd-nspawn –volatile=

systemd in Containers



Assorted features:

machinectl clone

machinectl set-limit

machinectl copy-from

machinectl copy-to

machinectl bind

systemd in Containers



Assorted features:

machinectl clone

machinectl set-limit

machinectl copy-from

machinectl copy-to

machinectl bind

systemd in Containers



Assorted features:

machinectl clone

machinectl set-limit

machinectl copy-from

machinectl copy-to

machinectl bind

systemd in Containers



Assorted features:

machinectl clone

machinectl set-limit

machinectl copy-from

machinectl copy-to

machinectl bind

systemd in Containers



Assorted features:

machinectl clone

machinectl set-limit

machinectl copy-from

machinectl copy-to

machinectl bind

systemd in Containers



Assorted features:

machinectl clone

machinectl set-limit

machinectl copy-from

machinectl copy-to

machinectl bind

systemd in Containers



Assorted features II:

systemd-nspawn –ephemeral

systemd-nspawn –port=

systemd in Containers



Assorted features II:

systemd-nspawn –ephemeral

systemd-nspawn –port=

systemd in Containers



Assorted features II:

systemd-nspawn –ephemeral

systemd-nspawn –port=

systemd in Containers



That’s all, folks!

systemd in Containers


