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1. Introduction 
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Privilege escalation 
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• In traditional Linux, root(uid=0) can do everything 
 
• Attackers seeks to get the root shell exploiting “privilege 

escalation vulnerabilities”. 
 

• Especially, Linux kernel vulnerabilities are often exploited. 
• Only 2017/1/1-8/1, 5 exploit codes for privilege escalation are 

disclosed in exploitdb.com 
 
 

• MAC (Mandatory Access Control) technologies had been introduced 
into Linux to confine root. 
• SELinux, AppArmor, Smack… 
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Typical process of privilege escalation exploiting kernel 
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Kernel space 

(1) Exec 
Exploit program 

(2) Call 
syscall 

(3) Exploit 
Vulnerabilities 

and uid=0 

(4)Exit 
syscall 

(5)Launch shell 
(uid=0) 

User space User space 

Usually difficult to write long  
exploit codes, 

So just changes uid=0 
commit_creds(prepare_kernel_cred(0)); 

Does anything  
using root shell 

MAC confines this 
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MAC is great, but not enough for kernel exploits  
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• MAC is often disabled 
• Unfortunately, it is a fact  
• Due to difficulties to create, manage security policies. 

 
• MAC can be bypassed when Linux kernel vulnerability is exploited 

• E.g.: bypassing SELinux 
Just overwrite the address of “selinux_enforcing” as “0” 

 
 

• MAC policy is not configured for login users by default. 
• SELinux 

• “unconfined_t” (allowed almost everything) is assigned to 
login users 

• AppArmor 
• Login users are not confined by default 

Motivation of our work: 
Prevent privilege escalation via Linux kernel vulnerabilities even without MAC 

ネタとして 
SELinux enforcingに 

するデモを行う 
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2. Design and implementation 
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Design goal 
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1) Prevent privilege escalation exploiting vulnerabilities in the Linux 
kernel 

• Not 100% protection, but reduce chance, make exploit difficult 
 

 
2) Small performance impact  
 
 
3) No impact to system administration 

• Zero configuration 
 
 
4) Simple implementation 

• Avoid modification to existing data structure, functions 
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Basic concept 

Kernel space 

(1) Exec 
Exploit program 

(2) Call 
syscall 

(3) Exploit 
Vulnerabilities 

and uid=0 

(4)Exit 
syscall 

(5)Launch shell 
(uid=0) 

User space User space 

Save credential 
Information 

(uid, gid, capabilities) 

Compare current credential 
Information 

 with saved information 
-> if changed, it is attack! 

• Very few system calls change credential information (setuid,setgid..) 
• Other system calls should not change credentials. 

The concept is implemented for x86_64 arch 
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Proposed method: AKO(Additional Kernel Observer) 

9 

Process 

System call 
service routine 

Credential 
information 

End of 
System call 

Store current  
credential 

User space 

Kernel space 

Check the change 
of credential 

Audit and exit 

Is credential 
Changed? 

AKO extension 

YES 

No 

Is the syscall  
Change credential  

normally? YES 
(e.g. setuid) 

No 

 Zero configuration 
 Does not change existing interface 
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Implementation: Entry of syscall 
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Process 

System call 
service routine 

Credential 
information 

End of 
System call 

Store current  
credential 

User space 

Kernel space 

Check the change 
of credential 

Audit and exit 

Is credential 
Changed? 

AKO extension 

YES 

No 

Is the syscall  
Change credential  

normally? YES 
(e.g. setuid) 

No 
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Hook syscalls 
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* arch/x86/entry/entry_64.S 

ENTRY(entry_SYSCALL_64) 
… 
call AKO_before 
… 
call    *sys_call_table(, %rax, 8) 
… 

asmlinkage void AKO_before 
(struct ako_struct * ako_cred, unsigned long long 
ako_sysnum) {  
… 
 if((sysnum == __NR_execve)   || (sysnum == __NR_setuid)    || (sysnum == 
__NR_setgid)    || (sysnum == __NR_setreuid) || 
           (sysnum == __NR_setregid) || (sysnum == __NR_setresuid) || (sysnum == 
__NR_setresgid) || (sysnum == __NR_setfsuid) || 
           (sysnum == __NR_setfsgid) || (sysnum == __NR_capset)    || (sysnum == 
__NR_prctl) || (sysnum == __NR_unshare)  ){ 
                return 0; 

… 

• To hook all syscalls, entry of syscalls has to be modified. 
     Hook function AKO_before is called 
 
• In the hook functions, syscalls that may change credential (uid,gid,capabilities) are not checked. 

* arch/x86/kernel/ako.c 
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Saving credentials: Credentials to be watched 
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* include/linux/ako.h 

struct ako_struct { 
unsigned long ako_addr_limit; 
uid_t  ako_uid; 
uid_t  ako_euid; 
uid_t  ako_fsuid; 
uid_t  ako_suid; 
gid_t  ako_gid; 
gid_t  ako_egid; 
gid_t  ako_fsgid; 
gid_t  ako_sgid; 
__u32  ako_inheritable[2]; 
__u32  ako_permitted[2]; 
__u32  ako_effective[2]; 
__u32  ako_bset[2]; 
}; 

• UID, GID:  Trivial  
• Capabilities: DAC_OVERRIDE can avoid permission 

check 
• addr_limit:  This is used for privilege escalation by 

changing limit between user/kernel space address. 

A struct ako_struct is prepared to store credential information 
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Saving credentials: embedded cred into stack   
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Thread_info 

used stack 

cpu_current_top_of_stack 

kernel stack for syscall 

ako_struct 

%rsp 

%rdi(first arg for ako_before) 
is set here 

* arch/x86/entry/entry_64.S 

• A struct ako_struct is prepared to store credential information 
• ako_struct is embedded in unused area of kernel stack for syscall 

ENTRY(entry_SYSCALL_64) 
… 
<ako_struct is embedded here> 
call AKO_before 
… 
call    *sys_call_table(, %rax, 8) 
… 

asmlinkage void AKO_before 
(struct ako_struct * ako_cred, unsigned long long ako_sysnum) {  
… 
ako_cred->ako_uid = current->cred->uid.val; 
ako_cred->ako_euid = current->cred->euid.val; 
ako_cred->ako_fsuid = current->cred->fsuid.val; 
… 
 

* arch/x86/kernel/ako.c 

passed from %rdi 

%rdi 

  

cred info before syscall is called is saved 
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Implementation: exit of syscall 
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Process

System call
service routine

Credential
information

End of
System call

Store current 
credential

User space

Kernel space

Check the change
of credential

Audit and exit

Is credential
Changed?

AKO extension

YES

No

Is the syscall
Change credential 

normally?YES
(e.g. setuid)

No
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Check change of credential information 
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Thread_info 

used stack 

cpu_current_top_of_stack 

kernel stack for syscall 

ako_struct 

%rsp 

* arch/x86/entry/entry_64.S 

ENTRY(entry_SYSCALL_64) 
… 
call AKO_before 
… 
call    *sys_call_table(, %rax, 8) 
… 
<set %rdi to addr of ako_struct> 
call AKO_after 

%rdi 

asmlinkage void AKO_after(struct ako_struct * ako_cred) 
{ 
if(ako_cred->ako_uid != current->cred->uid.val ||  
ako_cred->ako_euid != current->cred->euid.val || ako_cred-
>ako_fsuid != current->cred->fsuid.val || 
           ako_cred->ako_suid != current->cred->suid.val){ 
                audit_AKO_uid(ako_cred); 
                uid_modified = 1; 
        } 
… 
 if (uid_modified) { 
     do_exit(SIGKILL); 
… 

* arch/x86/kernel/ako.c passed from %rdi 

uid is changed, it is attack attempt 
so, exit forcefuly 



© Hitachi, Ltd. 2017. All rights reserved. 

Expansion to watch disabling MAC 
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Attack attempt to disable MAC can also be watched. 

Example : SELinux 
- Watch the change of sid, exec_sid, selinux_enforcing 
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3. Evaluation, Demo 
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Evaluation against design goal 
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Design Goal 
 
1) Prevent privilege escalation exploiting vulnerabilities in the Linux 
kernel 

• Not 100% protection, but reduce chance, make exploit difficult 
 
2) Small performance impact  

 
 

3) No impact to system administration 
• Zero configuration   Achieved 

 
4) Simple implementation 

• Avoid modification to existing data structure, functions  
  -> Achieved 

 
 

 
 

Experiment needed 
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Experiments 
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1.  Preventing attack 

2. Performance test 

* See whether AKO can prevent privilege escalation attacks 
using PoC exploit codes   

* Measure the overhead on system call 
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Experiment result #1: Preventing attacks 
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# CVE Overview of vulnerability Result 

1 CVE-2013-1763 Array index error due to 

inadequate parameter check in 

socket() 

Prevented at sendto syscall 

2 CVE-2014-0038 Memory destruction due to 

inadequate parameter check in 

recvmmsg() 

Prevented at open syscall 

3 CVE-2014-3153 Inadequate address check for 

re-queuing operation in futex() 

Prevented at futex syscall 

4 CVE-2016-0728 Use of integer overflow and 

freed memory in keyctl() 

Prevented at keyctl syscall 

5 CVE-2016-5195 a race condition occurs during 

a copy-on-write 

process(Dirtycow)  

NG 

6 CVE-2017-6074 Mishandles DCCP PKT 

REQUEST packet data in dccp 

rcv state process() 

Prevented at recvfrom syscall 

• Tried 6 PoC codes, 5/6 are prevented 

• DirtyCow can not be prevented, because exploit code can do 
harm even without setting uid=0 
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Experiment #2: Performance test 
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• Compared performance before and after introducing AKO. 
 

• Environment 
• CPU: Intel Core i5-3470 3.2 GHz (4 cores) 
• Memory: 4.0 GB 
• OS: Linux 3.10.0 (64 bit) 

 
 

• Microbench 
• Processing time of system calls 

 
• Apache bench, kernel build time 
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Experiment #2: Performance test result (microbench) 
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System call Before 

(us) 

After 

(us) 

Overhead 

(us) 

stat 0.368 0.383 0.015  

fstat 0.099 0.111 0.012  

write 0.105 0.141 0.036  

read 0.078 0.110 0.032  

getppid 0.040 0.048 0.008  

open+close 1.130 1.190 0.030  

LMBench: 



© Hitachi, Ltd. 2017. All rights reserved. 23 

Experiment #2: performance test result  

File size 

(KB) 

Before 

(ms) 

After 

(ms) 

Overhead 

(ms) 

1 0.465 0.467 0.002 (+0.4%) 

10 0.638 0.640 0.002 (+0.3%) 

100 1.523 1.525 0.002 (+0.1%) 

Apache bench: Processing time per request 

Kernel build time 

Before 

(s) 

After 

(s) 

Overhead 

(s) 

2669.0 2675.0 6.0(+0.2%) 
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Demo 
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4. Remaining issues and future direction 
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Security Consideration 
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• This mechanism can prevent existing exploit code. 
i.e. commit_creds(prepare_kernel_cred(0)); 
 
• However, after the mechanism is known to attackers, 
    they will try to bypass it. 
 
 
• Current implementation is not strong yet. 
   -> Working now 
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Bypassing current implementation 
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Thread_info 

struct pt_regs 

cpu_current_top_of_stack 

kernel stack for syscall 

ako_struct 

sizeof(struct pt_regs) 

Fixed: 6144 

This address is 
determined  

This address is determined  
: cpu_current_top_of_stack  

- sizeof(struct pt_regs)-6144 

Attackers can bypass the mechanism if ako_struct is 
overwritten in the exploit codes. 
-> ako_struct should be stored more strong space. 
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Idea: randomizing address 
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Thread_info 

struct pt_regs 

cpu_current_top_of_stack 

kernel stack for syscall 

ako_struct 

sizeof(struct pt_regs) 

Fixed: 6144 

padding random number 

At the start of entry_SYSCALL_64, 
insert random size padding  

Current status:  
  Begun prototype implementation.  
  Seems that some parts of kernel codes assumes that syscall kernel stack 
begins with struct pt_regs, and should be modified. 
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Conclusions 
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* Implemented a prototype to prevent privilege escalation attack 
 
* Evaluated the performance impact, and effectiveness against 
existing attacks 
 
 
* Remaining work  
  - Tough implementation not to be bypassed 
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Trademarks 
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• Apache is the registered trademark of the Apache Software Foundation in the U.S. and 

other countries. 

 

• Other brand names and product names used in this material are trademarks, registered 

trademarks, or trade names of their respective holders. 




