
© Hitachi, Ltd. 2017. All rights reserved.

2017/9/15

Yuichi Nakamura, Ph.D., Hitachi, Ltd.

Toshihiro Yamauchi, Ph.D., Okayama University

Proposal of a Method to
Prevent Privilege Escalation Attacks
for Linux Kernel

Linux Security Summit 2017

© Hitachi, Ltd. 2017. All rights reserved.

Contents

1

1. Introduction

2. Design and implementation

3. Evaluation and demo

4. Remaining issues and future direction

© Hitachi, Ltd. 2017. All rights reserved.

1. Introduction

2

© Hitachi, Ltd. 2017. All rights reserved.

Privilege escalation

3

• In traditional Linux, root(uid=0) can do everything

• Attackers seeks to get the root shell exploiting “privilege

escalation vulnerabilities”.

• Especially, Linux kernel vulnerabilities are often exploited.
• Only 2017/1/1-8/1, 5 exploit codes for privilege escalation are

disclosed in exploitdb.com

• MAC (Mandatory Access Control) technologies had been introduced
into Linux to confine root.
• SELinux, AppArmor, Smack…

© Hitachi, Ltd. 2017. All rights reserved.

Typical process of privilege escalation exploiting kernel

4

Kernel space

(1) Exec
Exploit program

(2) Call
syscall

(3) Exploit
Vulnerabilities

and uid=0

(4)Exit
syscall

(5)Launch shell
(uid=0)

User space User space

Usually difficult to write long
exploit codes,

So just changes uid=0
commit_creds(prepare_kernel_cred(0));

Does anything
using root shell

MAC confines this

© Hitachi, Ltd. 2017. All rights reserved.

MAC is great, but not enough for kernel exploits

5

• MAC is often disabled
• Unfortunately, it is a fact
• Due to difficulties to create, manage security policies.

• MAC can be bypassed when Linux kernel vulnerability is exploited

• E.g.: bypassing SELinux
Just overwrite the address of “selinux_enforcing” as “0”

• MAC policy is not configured for login users by default.
• SELinux

• “unconfined_t” (allowed almost everything) is assigned to
login users

• AppArmor
• Login users are not confined by default

Motivation of our work:
Prevent privilege escalation via Linux kernel vulnerabilities even without MAC

ネタとして
SELinux enforcingに

するデモを行う

© Hitachi, Ltd. 2017. All rights reserved.

2. Design and implementation

6

© Hitachi, Ltd. 2017. All rights reserved.

Design goal

7

1) Prevent privilege escalation exploiting vulnerabilities in the Linux
kernel

• Not 100% protection, but reduce chance, make exploit difficult

2) Small performance impact

3) No impact to system administration

• Zero configuration

4) Simple implementation

• Avoid modification to existing data structure, functions

© Hitachi, Ltd. 2017. All rights reserved. 8

Basic concept

Kernel space

(1) Exec
Exploit program

(2) Call
syscall

(3) Exploit
Vulnerabilities

and uid=0

(4)Exit
syscall

(5)Launch shell
(uid=0)

User space User space

Save credential
Information

(uid, gid, capabilities)

Compare current credential
Information

 with saved information
-> if changed, it is attack!

• Very few system calls change credential information (setuid,setgid..)
• Other system calls should not change credentials.

The concept is implemented for x86_64 arch

© Hitachi, Ltd. 2017. All rights reserved.

Proposed method: AKO(Additional Kernel Observer)

9

Process

System call
service routine

Credential
information

End of
System call

Store current
credential

User space

Kernel space

Check the change
of credential

Audit and exit

Is credential
Changed?

AKO extension

YES

No

Is the syscall
Change credential

normally? YES
(e.g. setuid)

No

 Zero configuration
 Does not change existing interface

© Hitachi, Ltd. 2017. All rights reserved.

Implementation: Entry of syscall

10

Process

System call
service routine

Credential
information

End of
System call

Store current
credential

User space

Kernel space

Check the change
of credential

Audit and exit

Is credential
Changed?

AKO extension

YES

No

Is the syscall
Change credential

normally? YES
(e.g. setuid)

No

© Hitachi, Ltd. 2017. All rights reserved.

Hook syscalls

11

* arch/x86/entry/entry_64.S

ENTRY(entry_SYSCALL_64)
…
call AKO_before
…
call *sys_call_table(, %rax, 8)
…

asmlinkage void AKO_before
(struct ako_struct * ako_cred, unsigned long long
ako_sysnum) {
…
 if((sysnum == __NR_execve) || (sysnum == __NR_setuid) || (sysnum ==
__NR_setgid) || (sysnum == __NR_setreuid) ||
 (sysnum == __NR_setregid) || (sysnum == __NR_setresuid) || (sysnum ==
__NR_setresgid) || (sysnum == __NR_setfsuid) ||
 (sysnum == __NR_setfsgid) || (sysnum == __NR_capset) || (sysnum ==
__NR_prctl) || (sysnum == __NR_unshare)){
 return 0;

…

• To hook all syscalls, entry of syscalls has to be modified.
 Hook function AKO_before is called

• In the hook functions, syscalls that may change credential (uid,gid,capabilities) are not checked.

* arch/x86/kernel/ako.c

© Hitachi, Ltd. 2017. All rights reserved.

Saving credentials: Credentials to be watched

12

* include/linux/ako.h

struct ako_struct {
unsigned long ako_addr_limit;
uid_t ako_uid;
uid_t ako_euid;
uid_t ako_fsuid;
uid_t ako_suid;
gid_t ako_gid;
gid_t ako_egid;
gid_t ako_fsgid;
gid_t ako_sgid;
__u32 ako_inheritable[2];
__u32 ako_permitted[2];
__u32 ako_effective[2];
__u32 ako_bset[2];
};

• UID, GID: Trivial
• Capabilities: DAC_OVERRIDE can avoid permission

check
• addr_limit: This is used for privilege escalation by

changing limit between user/kernel space address.

A struct ako_struct is prepared to store credential information

© Hitachi, Ltd. 2017. All rights reserved.

Saving credentials: embedded cred into stack

13

Thread_info

used stack

cpu_current_top_of_stack

kernel stack for syscall

ako_struct

%rsp

%rdi(first arg for ako_before)
is set here

* arch/x86/entry/entry_64.S

• A struct ako_struct is prepared to store credential information
• ako_struct is embedded in unused area of kernel stack for syscall

ENTRY(entry_SYSCALL_64)
…
<ako_struct is embedded here>
call AKO_before
…
call *sys_call_table(, %rax, 8)
…

asmlinkage void AKO_before
(struct ako_struct * ako_cred, unsigned long long ako_sysnum) {
…
ako_cred->ako_uid = current->cred->uid.val;
ako_cred->ako_euid = current->cred->euid.val;
ako_cred->ako_fsuid = current->cred->fsuid.val;
…

* arch/x86/kernel/ako.c

passed from %rdi

%rdi

cred info before syscall is called is saved

© Hitachi, Ltd. 2017. All rights reserved.

Implementation: exit of syscall

14

Process

System call
service routine

Credential
information

End of
System call

Store current
credential

User space

Kernel space

Check the change
of credential

Audit and exit

Is credential
Changed?

AKO extension

YES

No

Is the syscall
Change credential

normally?YES
(e.g. setuid)

No

© Hitachi, Ltd. 2017. All rights reserved.

Check change of credential information

15

Thread_info

used stack

cpu_current_top_of_stack

kernel stack for syscall

ako_struct

%rsp

* arch/x86/entry/entry_64.S

ENTRY(entry_SYSCALL_64)
…
call AKO_before
…
call *sys_call_table(, %rax, 8)
…
<set %rdi to addr of ako_struct>
call AKO_after

%rdi

asmlinkage void AKO_after(struct ako_struct * ako_cred)
{
if(ako_cred->ako_uid != current->cred->uid.val ||
ako_cred->ako_euid != current->cred->euid.val || ako_cred-
>ako_fsuid != current->cred->fsuid.val ||
 ako_cred->ako_suid != current->cred->suid.val){
 audit_AKO_uid(ako_cred);
 uid_modified = 1;
 }
…
 if (uid_modified) {
 do_exit(SIGKILL);
…

* arch/x86/kernel/ako.c passed from %rdi

uid is changed, it is attack attempt
so, exit forcefuly

© Hitachi, Ltd. 2017. All rights reserved.

Expansion to watch disabling MAC

16

Attack attempt to disable MAC can also be watched.

Example : SELinux
- Watch the change of sid, exec_sid, selinux_enforcing

© Hitachi, Ltd. 2017. All rights reserved.

3. Evaluation, Demo

17

© Hitachi, Ltd. 2017. All rights reserved.

Evaluation against design goal

18

Design Goal

1) Prevent privilege escalation exploiting vulnerabilities in the Linux
kernel

• Not 100% protection, but reduce chance, make exploit difficult

2) Small performance impact

3) No impact to system administration
• Zero configuration Achieved

4) Simple implementation

• Avoid modification to existing data structure, functions
 -> Achieved

Experiment needed

© Hitachi, Ltd. 2017. All rights reserved.

Experiments

19

1. Preventing attack

2. Performance test

* See whether AKO can prevent privilege escalation attacks
using PoC exploit codes

* Measure the overhead on system call

© Hitachi, Ltd. 2017. All rights reserved.

Experiment result #1: Preventing attacks

20

CVE Overview of vulnerability Result

1 CVE-2013-1763 Array index error due to

inadequate parameter check in

socket()

Prevented at sendto syscall

2 CVE-2014-0038 Memory destruction due to

inadequate parameter check in

recvmmsg()

Prevented at open syscall

3 CVE-2014-3153 Inadequate address check for

re-queuing operation in futex()

Prevented at futex syscall

4 CVE-2016-0728 Use of integer overflow and

freed memory in keyctl()

Prevented at keyctl syscall

5 CVE-2016-5195 a race condition occurs during

a copy-on-write

process(Dirtycow)

NG

6 CVE-2017-6074 Mishandles DCCP PKT

REQUEST packet data in dccp

rcv state process()

Prevented at recvfrom syscall

• Tried 6 PoC codes, 5/6 are prevented

• DirtyCow can not be prevented, because exploit code can do
harm even without setting uid=0

© Hitachi, Ltd. 2017. All rights reserved.

Experiment #2: Performance test

21

• Compared performance before and after introducing AKO.

• Environment
• CPU: Intel Core i5-3470 3.2 GHz (4 cores)
• Memory: 4.0 GB
• OS: Linux 3.10.0 (64 bit)

• Microbench
• Processing time of system calls

• Apache bench, kernel build time

© Hitachi, Ltd. 2017. All rights reserved.

Experiment #2: Performance test result (microbench)

22

System call Before

(us)

After

(us)

Overhead

(us)

stat 0.368 0.383 0.015

fstat 0.099 0.111 0.012

write 0.105 0.141 0.036

read 0.078 0.110 0.032

getppid 0.040 0.048 0.008

open+close 1.130 1.190 0.030

LMBench:

© Hitachi, Ltd. 2017. All rights reserved. 23

Experiment #2: performance test result

File size

(KB)

Before

(ms)

After

(ms)

Overhead

(ms)

1 0.465 0.467 0.002 (+0.4%)

10 0.638 0.640 0.002 (+0.3%)

100 1.523 1.525 0.002 (+0.1%)

Apache bench: Processing time per request

Kernel build time

Before

(s)

After

(s)

Overhead

(s)

2669.0 2675.0 6.0(+0.2%)

© Hitachi, Ltd. 2017. All rights reserved.

Demo

24

© Hitachi, Ltd. 2017. All rights reserved.

4. Remaining issues and future direction

25

© Hitachi, Ltd. 2017. All rights reserved.

Security Consideration

26

• This mechanism can prevent existing exploit code.
i.e. commit_creds(prepare_kernel_cred(0));

• However, after the mechanism is known to attackers,
 they will try to bypass it.

• Current implementation is not strong yet.
 -> Working now

© Hitachi, Ltd. 2017. All rights reserved.

Bypassing current implementation

27

Thread_info

struct pt_regs

cpu_current_top_of_stack

kernel stack for syscall

ako_struct

sizeof(struct pt_regs)

Fixed: 6144

This address is
determined

This address is determined
: cpu_current_top_of_stack

- sizeof(struct pt_regs)-6144

Attackers can bypass the mechanism if ako_struct is
overwritten in the exploit codes.
-> ako_struct should be stored more strong space.

© Hitachi, Ltd. 2017. All rights reserved.

Idea: randomizing address

28

Thread_info

struct pt_regs

cpu_current_top_of_stack

kernel stack for syscall

ako_struct

sizeof(struct pt_regs)

Fixed: 6144

padding random number

At the start of entry_SYSCALL_64,
insert random size padding

Current status:
 Begun prototype implementation.
 Seems that some parts of kernel codes assumes that syscall kernel stack
begins with struct pt_regs, and should be modified.

© Hitachi, Ltd. 2017. All rights reserved.

Conclusions

29

* Implemented a prototype to prevent privilege escalation attack

* Evaluated the performance impact, and effectiveness against
existing attacks

* Remaining work
 - Tough implementation not to be bypassed

30 © Hitachi, Ltd. 2017. All rights reserved.

Trademarks

• Linux is the registered trademark of Linux Torvalds in the U.S. and other countries.

• Apache is the registered trademark of the Apache Software Foundation in the U.S. and

other countries.

• Other brand names and product names used in this material are trademarks, registered

trademarks, or trade names of their respective holders.

