
demystifying systemd 
for embedded systems

OpenIoT & ELC Europe 2016



Agenda

- Who am I?

- Embedded Systems?

- Background

- Systemd for Embedded Systems Myths

- Baseline

- Scaling Up

- Super-tiny Systems



Who am I?

- Brazilian

- Software Developer since 9yo

- Working with Embedded since 2005

- Software development services

- Passionate about efficiency

- Fast boot enthusiast

- Hacked many init systems

- Doing systemd since it was public

Gustavo Sverzut Barbieri
Computer Engineer

ProFUSION embedded systems



Embedded Systems?



Embedded Systems?

- Underpowered hardware

- Low memory

- Simple applications

- Single purpose

- Long development cycles

- Long deployment



Embedded Systems?

- Underpowered hardware

- Low memory

- Simple applications

- Single purpose

- Long development cycles

- Long deployment

?
- Medical Equipment is beefy

- Smartphones are multi 
purpose and far from simple

- IoT expects faster cycles than 
Smartphones



Embedded Systems?

- Underpowered hardware

- Low memory

- Simple applications

- Single purpose

- Long development cycles

- Long deployment

?
- Medical Equipment is beefy

- Smartphones are multi 
purpose and far from simple

- IoT expects faster cycles than 
Smartphones

it’s not a server or a laptop/desktop



Embedded Systems in this talk

- runs regular GNU/Linux

- more than one persistent process running

- reasonable hardware



Background



Background

- Recurrent requests for efficient boot

- Proper babysitting various kinds of processes is not trivial

- Security concerns raise need for proper isolation

- Growing awareness that systems are dynamic



Background: Ostro Project

- Yocto Project based OS for Internet of Things (IoT)

- Pre-built

- Pre-configured

- Pre-secured

https://ostroproject.org/



Background: Ostro Project is Pre-Built

- IoT and traditional Embedded Systems scopes are too broad

- One choice that nicely covers a wide spectrum is essential

- Time to market and quick development cycles over manual fine tuning



Background: Ostro Project is Pre-Configured

- Stateless is important

- Dynamic behavior is essential

- Uniform file format helps a lot

- Drop-in configuration fragments

- Well documented configuration files



Background: Ostro Project is Pre-Secured

- Least privilege rule for services is essential

- Namespaces are useful

- Multi-purpose systems based on 3rd party software benefit from containers



Background: Ostro Project

Possibilities:

- systemd
- upstart
- openrc
- sysvinit
- busybox / toybox



Systemd for Embedded 
Systems Myths



Systemd for Embedded Systems Myths

- too big

- too complex

- uses DBus and I don’t need XML

- is done by Lennart and he did PulseAudio, will break my system



Baseline
what does a

minimal systemd
looks like?

Most people get GIT or a pre-built 
package and are scared by the 
amount of files and the resulting size.

- 3M /usr/bin

- 15M /usr/lib

Is ~18M the baseline?

How to compare apples-to-apples?

* x86_64bits using glibc



Baseline considerations on /usr/bin

- *ctl, systemd-{escape,path}: 648K of useful tools

- systemd-{analyze,cgls,cgtop,delta}: 1.1M of useful debug tool

- systemd-{ask-password,tty-ask-password}: should be done in your application

- systemd-sysusers is 44K… but shadow is 3M!

- udevadm and systemd-hwdb are 512K

- ...

All useful but not required or provided by competition, apples-to-apples…

HINT: to boot a system you need none of these if you remove the “.service” that may use them.



Baseline considerations on /usr/lib

- libsystemd.so 548K, systemd/libsystemd-shared.so 2.1M, systemd/systemd 1.1M

- 6.9M udev (libudev.so 128K, udev/ 5.8M, systemd/systemd-udevd 452K...)

- libnss_*.so: 904K of optional improvements and convenience for name server

- security/pam_systemd.so 276K for PAM

- ...



Baseline: step 1 - easy diet

- Compiled with -Os (previous numbers were -O2)

- Disabled all features listed by ./configure --help

- 7.4 M of systemd software (previously 18M)

- still lots of /usr/bin/ utils that could be removed (2M)

- udev (1.2M) and journal (104K) still present



Baseline: step 2 - manual inspection

- Based on step 1 - easy-diet (7.4M of systemd files)

- Manually removing useful but not essential (./initramfs.sh): 5.4M

- No journal: 5.0M

- No journal, no udev: 3.9M

NOTE: timers, socket activation, process babysitting, service dependencies, namespaces, 
capabilities… all there!



Baseline: what about the kernel?

Build Size Comments

x86_64_defconfig 6.3M Recommended config for 64-bits x86

minimal 668K allnoconfig
+ printk + tty + /proc + /sys + /dev + serial

systemd 1256K
+88%

minimal
+ systemd/README (IPv6, SECCOMP, Namespaces…)

systemd-minimal 820K
+25%

minimal
+ systemd/README essentials (no network, block devices…)



Scaling Up
You know systemd scales up, but 

how other solutions do?

How to scale up busybox?



Scaling Up Busybox
Journal/Log klogd and syslogd (builtins) or rsyslog

Service babysit and restart inittab and inetd (builtins) + shell script

Networking
systemd-networkd

udhcpc and udhcpc6 (builtins) + shell script

Dynamic Name Resolver
systemd-resolved

Shell script

Hotplug mdev (builtin) + shell script

Automount mdev (builtin) + shell script

Module loading mdev (builtin) + shell script



Scaling Up Busybox
System Users adduser and addgroup (builtins) + shell script

Locale Setup Shell script

Boot loader Shell script

Socket Activation Inetd (builtin)

Timers crond (builtin)

Cleanup
systemd-tmpfiles

Shell script

Containers
systemd-nspawn

Not covered



Scaling Up Busybox

- Only basic blocks are provided

- User is left with the task to glue with shell script

- Based on traditional tools file formats -- all different

- Very simple functionality

Busybox focus on disk footprint…
...so you can “focus” on doing everything on your own.



Super-tiny 
Systems

Baseline is too big?
Want to go very small?

Busybox / Toybox are cumbersome, 
could we have some systemd-like 
utility that is small?



Talking to Marcel Holtmann he shared his view:

This drove the linux-micro implementation of Soletta Project, a framework for making IoT 
devices which provides an API to the whole system: network, sensors, actuators and… 
system init!

Really constrained embedded systems shouldn’t even have 
userspace! They should be a single binary that does everything… 
Statically linked PID1 applications! Built as initramfs inside the 

kernel, signed and handled as a single entity.

I’m using that to test BlueZ, you should try that.

Super-tiny systems

https://github.com/solettaproject/soletta



Soletta Project

- Developed primarily on GNU/Linux with systemd
- Port to various Small OSes (MCU-class), such as RIoT, Contiki and Zephyr
- Linux-micro port allows systemd-like behavior as PID1
- Mounts filesystems, including automount and fstab reading
- Setups hostname and networking (IPv6 autoconfig)
- Watchdog
- Module autoloading using kmod
- Applies sysctl
- Spawns and babysit dbus-daemon and bluetoothd
- Configures machine-id
- Spawns console for debug

https://github.com/solettaproject/soletta



Soletta Project - Linux-Micro

- no busybox, no shell, no scripts

- statically linked binaries using musl-libc

- network-up and watchdog modules

- Flow-Based-Programming (FBP) runtime with:
GPIO
Timer and
OpenInterConnect (OIC - now OCF): ~400Kb total userspace



Gustavo Sverzut Barbieri
<barbieri@profusion.mobi>

Thank You!
Questions?

scripts available at:
https://github.com/profusion/

demystifying-systemd-for-embedded-systems


