
2014 Storage Developer Conference. © Insert Your Company Name. All Rights Reserved.

 A simple and scalable pNFS server for
Linux

Christoph Hellwig

pNFS Overview

 Parallel NFS (pNFS) is a part of the NFSv4.1 spec
(RFC5661)
– Allow to bypass the Meta Data Server (MDS) for

data I/O
– Various different protocols for data I/O which

are not part of the main (p)NFS standard

pNFS layout types

 File layout (part of RFC5661)
– Uses a subset of NFSv4.1 to storage devices

 Block layout (RFC5663)
– Performs block I/O directly to shared block

storage
 Object layout (RFC5664)

– Uses T10 OSD commands to talk to storage
devices

pNFS Overview

ServerClient Storage Device

NFS Block I/O

pNFS I/O protocol

Control Protocol

pNFS operations

 LAYOUTGET (handle, range)
→retrieve type specific layout pointing to a

device ID
 LAYOUTRETURN (handle, range)

 → release layout
 LAYOUTCOMMIT (handle, range, attributes)

 → commit data so that it is visible to other
clients, update meta data

 GETDEVICEINFO (device ID)
 → retrieve mapping information for device

pNFS callback operations

 CB_LAYOUTRECALL
 → recall a layout or all layouts from a file

 CB_RECALLABLE_OBJ_AVAIL
 → tell client that a layout is now available

 CB_NOTIFY_DEVICEID
 → tell client about changed device mappings

pNFS protocol workflow

ServerClient Storage Device

OPEN

GETDEVICEINFO

LAYOUTGET

LAYOUYCOMMIT SYNCHRONIZE CACHE

CLOSE

LAYOUTRETURN

 READ

 WRITE

pNFS block layout

 Any block protocol can be used for I/O
– Typically some form of SCSI
– The client just reads and writes to the device

 Essentially a traditional shared disk file system
using NFS to manage meta data

pNFS block layout – device discovery

 Device identification by content:
– The client scans for a UUID at a specific offset
– Requires iterating over all block devices

available to the client
 Generally a pretty bad idea, potential fix in:

http://tools.ietf.org/html/draft-hellwig-nfsv4-scsi-layout-00

http://tools.ietf.org/html/draft-hellwig-nfsv4-scsi-layout-00

block layout: LAYOUTGET/LAYOUTCOMMIT

enum pnfs_block_extent_state {

 PNFS_BLOCK_READWRITE_DATA = 0,

 PNFS_BLOCK_READ_DATA = 1,

 PNFS_BLOCK_INVALID_DATA = 2,

 PNFS_BLOCK_NONE_DATA = 3,

};

struct pnfs_block_extent {

 struct nfsd4_deviceid vol_id;

 u64 foff;

 u64 len;

 u64 soff;

 enum pnfs_block_extent_state es;

};

pNFS block layout – error handling

 The server needs to cut off a client that does not
behave (fencing)
– Clients can access the whole disk

 Not very well specified at the protocol level, server
is expected to fence the target / switch
– Requires an IP-based storage protocol
– Requires NFS and storage to use the same

network interface and address
 My scsi-layouts proposal proposes to use SCSI3

reservations to fix this issue

The first Linux pNFS server

 Linux pNFS support has been under development
since 2006
– But the server never made it out of out-of-tree

prototype state
– Structured to have very little common code, and

hand off all pNFS work to the file system
– Did have file, object and block layout drivers of

various sorts, but none of them was very
useful

The new Linux pNFS server

 Started out as a pNFS block layout driver to export
XFS file systems
– Turned into an entirely new server

implementation
 The new server is very simple:

 38 files changed, 1361 insertions(+), 90 deletions(-)

Linux pNFS server architecture

 Structured to:
– Keep as much common code as possible
– keep protocol specific code in the NFS server
– Do as little as possible work in the file system

NFS server

Layout driver

FS FS FS FS

Layout driver

Layout driver design

 In general the Linux NFS server is split into three
phases:

1. XDR decoding
2.Processing
3.XDR result encoding

 The pNFS server has separate methods for these
phases

Layout driver: methods
struct nfsd4_layout_ops {

 u32 notify_types;

 __be32 (*proc_getdeviceinfo)(struct super_block *sb,

 struct nfsd4_getdeviceinfo *gdevp);

 __be32 (*encode_getdeviceinfo)(struct xdr_stream *xdr,

 struct nfsd4_getdeviceinfo *gdevp);

 __be32 (*proc_layoutget)(struct inode *,

 const struct svc_fh *fhp,

 struct nfsd4_layoutget *lgp);

 __be32 (*encode_layoutget)(struct xdr_stream *,

 struct nfsd4_layoutget *lgp);

 __be32 (*proc_layoutcommit)(struct inode *inode,

 struct nfsd4_layoutcommit *lcp);

};

Layout driver: data structures
struct nfs4_layout_stateid {

 struct nfs4_stid ls_stid;

 struct list_head ls_perclnt;

 struct list_head ls_perfile;

 spinlock_t ls_lock;

 struct list_head ls_layouts;

 u32 ls_layout_type;

 struct file *ls_file;

 struct nfsd4_callback ls_recall;

 stateid_t ls_recall_sid;

 bool ls_recalled;

};

struct nfs4_layout {

 struct list_head lo_perstate;

 struct nfs4_layout_stateid *lo_state;

 struct nfsd4_layout_seg lo_seg;

};

pNFS server: I/O path design

1. Common code handles all requests by doing any
sort of common validation and state ID processing

2. Then calls out to the layout driver where needed,
passing along the whole operation state

3. Core code handles all manipulation of the in-
memory layout and layout state ID data structures

pNFS server: GETDEVICEINFO

 Device IDs are a nightmare
– Globally valid (not per fsid)
– 128bit identifier (less than typical fsids)
– Must never be reused

pNFS server: GETDEVICEINFO

struct nfsd4_deviceid {

 u64 fsid_idx;

 u32 generation;

 u32 pad;

};

 The first time LAYOUTGET is called on a device we
allocate a nfsd4_deviceid_map structure and an
index, and hash it
– GETDEVICEINFO looks it up in the hash by the

index to retrieve the export pointer
– The structure is never freed

pNFS server: layout recalls

 A server may recall outstanding layouts from a
client:
– Truncate
– Conflicting access

 We only support whole file recalls
– Allows embedding recall information in the

layout state structure
 All new LAYOUTGETs are blocked during

outstanding recalls

pNFS server: block layout driver

 The block layout driver has two parts:
– XDR encoding / decoding
– A small wrapper to bridge between pNFS and

three new export_operations methods:

int (*get_uuid)(struct super_block *sb, u8 *buf, u32 *len,

 u64 *offset);

int (*map_blocks)(struct inode *inode, loff_t offset,

 u64 len, struct iomap *iomap,

 bool write, u32 *device_generation);

int (*commit_blocks)(struct inode *inode, struct iomap *iomaps,

 int nr_iomaps, struct iattr *iattr);

pNFS server: XFS support code

 There is very little file system support code for
pNFS block layouts:
– Implementations of the export_operations
– Code to recall layouts that clients might have

outstanding on truncate-like operations or
write()
• Calls into the NFS server by abusing file locks

block layout: LAYOUTGET/LAYOUTCOMMIT

enum pnfs_block_extent_state {

 PNFS_BLOCK_READWRITE_DATA = 0,

 PNFS_BLOCK_READ_DATA = 1,

 PNFS_BLOCK_INVALID_DATA = 2,

 PNFS_BLOCK_NONE_DATA = 3,

};

struct pnfs_block_extent {

 struct nfsd4_deviceid vol_id;

 u64 foff;

 u64 len;

 u64 soff;

 enum pnfs_block_extent_state es;

};

XFS extent structure

typedef enum {

 XFS_EXT_NORM, XFS_EXT_UNWRITTEN,

 XFS_EXT_DMAPI_OFFLINE, XFS_EXT_INVALID

} xfs_exntst_t;

typedef struct xfs_bmbt_irec {

 xfs_fileoff_t br_startoff;

 xfs_fsblock_t br_startblock;

 xfs_filblks_t br_blockcount;

 xfs_exntst_t br_state;

} xfs_bmbt_irec_t;

XFS pNFS I/O path

 Basically an extended version of the direct I/O path.
 Steps for LAYOUTGET:

1. Invalidate the page cache before handing out
extents

2.Call into the block allocator to look for the
blocks

3.If block allocation is requires allocate blocks as
unwritten extents

 LAYOUTCOMMIT converts unwritten extents and
updates the file size and time stamps

Benchmarks?

Questions?

	Slide 1
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11
	Slide 12
	Slide 13
	Slide 14
	Slide 15
	Slide 16
	Slide 17
	Slide 18
	Slide 19
	Slide 20
	Slide 21
	Slide 22
	Slide 23
	Slide 24
	Slide 25
	Slide 26
	Slide 27
	Slide 28

