
Linux QoS framework usage report
for containers and cloud and

challenges ahead
- Vikas Shivappa, Intel

Acknowledgements: Tony Luck, Matt
Fleming, CSIG-Intel

1

Agenda

• Problem definition
• Why use Kernel QOS framework

• Intel Cache/memory qos support

• Kernel implementation

• Openstack and Container support

• Performance improvement

• Future Work

2

Without Cache/Memory QoS
framework(quality of service)

High Pri
apps

Low Pri
apps

C2

Low pri apps may get
more cache

Shared Processor Cache

C1 C3 Cores Cores

- Noisy neighbour => Degrade/inconsistency in response => QOS
difficulties

- HPC
3

Increasing cores
=>Multithreading

L3 contention

Agenda

• Problem definition

• Why use Kernel QOS framework
• Intel cache/memory qos support

• Kernel implementation

• Openstack and Container support

• Performance improvement

• Future Work

4

Why use the Cache/Memory QOS
framework?

Threads

Architectural details of ID
management/scheduling

• User friendly
interfaces :
Perf/cgroup

• Abstracts a lot of
architectural/Syst
em level details

5

With Cache QoS

- Help monitor and control shared resources => achieve consistent response =>
better QoS

- Cloud or Server Clusters
- Containers
- HPC

High Pri
apps

Low Pri
apps

Kernel Cache QOS
framework

Intel QOS h/w support

Controls to allocate the
appropriate cache to

high pri apps

Proc
Cache

User space

Kernel space

h/w

6

Agenda

• Problem definition

• Why use Kernel QoS framework

• Intel Cache/Memory QoS support
• Kernel implementation

• Openstack support

• Container support

• Performance improvement

• Future Work
7

What is Cache/Mem QoS ?

• Cache/Memory b/w
Monitoring
– cache occupancy/mem b/w

per thread
– perf interface

• Cache Allocation
– user can allocate overlapping

subsets of cache to
applications

– cgroup interface (out of tree
only, new interface coming
up)

8

Intel QoS Terminologies

• RDT – Resource director technology

– is basically “Processor QoS” under which the
cmt/cat/mbm etc are all sub-features

• CMT – Cache Monitoring Technology or also
called CQM

• CAT – Cache Allocation Technology

• MBM – Memory b/w monitoring

9

Cache lines Thread ID
(Identification)

• Cache Monitoring
– RMID (Resource Monitoring

ID) PID.
– RMID tagged to cache lines

allocated

• Cache Allocation
– CLOSid (Class of service ID)
– Restrict when Cache is filled

• Memory b/w
– RMID <=> Total L3 external

b/w

10

Agenda

• Problem definition

• Existing techniques

• Why use Kernel QOS framework

• Intel Cache qos support

• Kernel implementation
• Openstack and Container support

• Performance improvement

• Future Work
11

Kernel Implementation

Threads

Cgroup fs

/sys/fs/cgroup perf

User interface

Cache alloc cache / mem b/w
monitoring

Kernel QOS support

Intel Xeon QOS support

Shared L3 Cache

User Space

Kernel Space

Hardware

MSR
Configure

bitmask per
CLOS

Set
CLOS/RMID
for thread

During ctx
switch

Allocation
configuration

Read
Event

counter

Read Monitored
data

12

Memory

Memory b/w Monitoring

RMID1…RMIDn

Shared L3

Memory

CLOSID1…RMIDn

Mem Ctlr Mem Ctlr

Memory

RMID1…RMIDn

CLOSID1…RMIDn

CoresCoresCoresCores CoresCoresCoresCores

Socket0 Socket1

Local mem b/w
Local mem b/w

+ Total mem b/w

Shared L3

MBM implementation continued

• Typically
– sched_in

• prev_count = read_hw_count();

– sched_out
• c = read_hw_count();

• count += c – prev_count;

• Wont work for MBM as we have per package
RMIDs
– Doing the above on 2 core siblings for a PID with

same RMID would result in duplicate count.

14

MBM hierarchy monitoring

15

G1

e1 st e1
end

e2 st e2 end

0 MB 5 MB 10 MB 11 MB

Time

e1 e2Monitor

G12G11

G121

G1211 G1212

RMID2

- e1 : should read 10MB
- e2 : should read 13MB
- e3 : should read 5MB

e3

Share RMID1

e3 st e3 end

0MB 5MB

E2 gets
RMID3

E2 loses
RMID1

0 MB 2 MB1MB 2MB

Sample cgroup
hierarchy

- Other considerations
- Movement of tasks between

cgroups
- MBM counters overflow

MBM hierarchy monitoring

16

• Implement using periodic updates of the ‘per-
RMID count’ as well a ‘per event count’

• This helps take care of all the scenarios

– Task movement between cgroups

– RMID recycling

– Events start counting the same cgroup at different
times (they only need to read the current event
count)

Usage
Basic monitoring per thread cache occupancy/ Mem
b/w

17

- Basic usage example.
- Results display the total cache occupancy and total mem b/w for the

thread.

Other Usage modes

• Monitor cgroup

• Per socket monitoring

– --per-socket does not work as we are not cpu
event

– --per-cpu doesn’t work either

– Use –C <cpu in the socketN>

• Systemwide

– Fail if (–a && –t) option (system wide task mode)

18

Usage Scenarios

• Units that can be monitored for cache/memory
b/w

– Process/tasks

– Virtual machines and cloud (transfer all PIDs of VM to
one cgroup)

– Containers (put the entire container into one cgroup)

• Restrict the noisy neighbour

• Fair cache allocation to resolve cache contention

19

Agenda

• Problem definition

• Existing techniques

• Why use Kernel QOS framework

• Intel Cache qos support

• Kernel implementation

• OpenStack / Container support
• Challenges

• Performance improvement

• Future Work
20

Openstack usage

Applications

Openstack
dashboard

Open Stack Services

Standard hardware

Shared L3 CacheShared L3 Cache

Integration
Compute Network Storage

21

Openstack usage …

Perf
syscall/
Cgroup

OpenStack

libvirt

Virt mgr ovirt . . .

KVM Xen . . . Kernel
Cache QOS

- Libvirt patches submitted (Qiaowei qiaowei.ren@intel.com) – based on
kernel QOS framework

- CAT/CMT/MBM was demoed in openstack forums/ conference

22

mailto:qiaowei.ren@intel.com

Containers support

• Dockers support patch was built to use the
new CAT cgroup

• Was simpler change as dockers and systemd
already have all the plumbing to use cgroups

23

Cyclic tests using docker

24

- With CAT(green curve) has a more consistent response latency range
comparable to the no-noise scenario (0-16)

- Most of the samples falling the 1-9.

25

Baseline : NGINX web server, ext. load generation system, 2x Intel® Xeon® processor E5-2699 v4, 2.2GHz, 22c, 64GB DDR4-2133, 10Gb X540-AT2 NICs. Ubuntu14.04, Kernel v4.4 + RDT Patches.
C1E / turbo disabled. CAT: Restrict “noisy neighbors” : CAT mask 0x00003. “Noisy neighbor” apps: 11 processes /skt of stream, array size 100e6. Ext Load generation system: wg/WRK
running 22 thrds, Ubuntu* 14.04, 2x Intel Xeon processor L5520@ 2.27GHz CPUs, 24GB DDR3-1067 with 10Gb Intel® X540-AT2 NICs. Data Source: Appformix, March 2016

0

5

10

15

20

25

30

35

2S Intel® Xeon® processor E5-2699 v4 (No CAT)

2S Intel® Xeon® processor E5-2699 v4 (with CAT)

Improved Average Web
Server Latencies

A
vg

. R
es

p
o

n
se

 T
im

e
(m

s)

0

50

100

150

200

250

300

350

400

450

500

2S Intel® Xeon® processor E5-2699 v4 (No CAT)

2S Intel® Xeon® processor E5-2699 v4 (with CAT)

Improved Worst-Case Web
Server Latencies

A
vg

. R
es

p
o

n
se

 T
im

e
(m

s)

0

200

400

600

800

1000

1200

2S Intel® Xeon® processor E5-2699 v4 (No CAT)

2S Intel® Xeon® processor E5-2699 v4 (with CAT)

Workload: NGINX based webserver on Intel Xeon processor E5 v4, 100KB request size

R
eq

u
es

ts
 P

er
 S

ec
o

n
d

Cache Allocation Technology
(CAT) can prioritize important

VMs – e.g., web server

NGINX* Web Server
Performance

AppFormix* – Orchestration with Containers
(Kubernetes)

UC , Berkley CA RDT usage

26

• Network functions are executing simultaneously on isolated core’s, throughput of
each Virtual Machines is measured

• Min packet size (64 bytes), 100K flows, uniformly distributed

OSV adaption status

 Intel RDT support status for OSVs

 CMT:

 RHEL 7.2 (3.10): merged

 Ubuntu 15.10 (4.2): merged

 SLES12 SP2 Beta (4.4): finished backporting and test, will merge

 Alibaba, Baidu: Backported and in Testbed

 MBM:

 RHEL 7.3 RC (3.10): finished backporting and test, will merge

 Ubuntu 16.04 (4.4): merged

 SLES12 SP3 Beta (4.4): will submit request

 Alibaba, Baidu: Backported and in Testbed

 CAT, CDP :

 Currently all using out of tree patches. Waiting for upstream patches

 Google : using currently in testbed

 Alibaba, Baidu: Backported and in Testbed

27

Challenges

• Openstack, Container next steps

• What if we run out of IDs ?

• What about Scheduling overhead

• Doing monitoring and allocation together

28

Openstack/container next steps for
CAT/CDP

• kernel CAT cgroup support will remain out of tree
– cgroup Pros

• openstack/dockers other enterprise users like Google could use
the feature on test bed and are ready to adapt

• Was supported by much of community
(Peterz/HPA/dockers/google) for quite sometime.

• Issues like hierarchy/kernel thread issue was related to cgroup.

– Cons
• Thomas rejected cgroup interface eventually.
• Quickly run out of CLOSIds with cgroup hierarchy, more in v2 –

However reuse had mitigated some of the issues.
• Could not do per socket Closid due to atomic update issue

• Openstack and Dockers CAT support needs a rewrite
to use the new CAT (resctl) interface.

29

What if we run out of IDs ?

• Group tasks together (by
process?)

• Group cgroups together
with same mask

• return –ENOSPC

• Postpone/ Recycle

30

RMID recycling

• Not really ‘virtual RMIDs’ currently as we
don’t switch RMIDs at context switch.

• For cqm, cache occupancy is still tied to the
RMID after we ‘free’ an RMID -> it goes to
limbo list.

• However for MBM , the RMIDs can be used
immediately without waiting for zero
occupancy.

31

RMID recycling

32

F – Free state (f- free count)
L – Limbo
A - Allocated
e – event (er- # of required
RMIDs)

RMID recycling accuracy

• Current scheme eg:

• The counting time is proportional to the max
RMID to required RMID ratio

• Ex: 80 RMIDs max , 100 required RMIDs

– on average an event is counted for 80% of time
and missed for 20% of the time

33

Scheduling performance

• msrread/write costs 250-300 cycles

• Keep a cache. Grouping helps !

34

Monitor and Allocate

• RMID(Monitoring)
CLOSid(allocation)
different

• Monitoring and allocate
same set of tasks easily

– perf cannot monitor the
cache alloc cgroup/ now
resctl(?)

35

Agenda

• Problem definition

• Existing techniques

• Why use Kernel QOS framework

• Intel Cache qos support

• Kernel implementation

• Challenges

• Performance improvement and
Future Work

36

Performance Measurement

• Intel Xeon based server, 16GB RAM
• 30MB L3 , 24 LPs
• RHEL 6.3
• With and without cache allocation comparison
• Controlled experiment

– PCIe generating MSI interrupt and measure time for
response

– Also run memory traffic generating workloads (noisy
neighbour)

• Experiment Not using current cache alloc patch

37

Performance Measurement[1]

2.8x

1.5x

1.3x

- Minimum latency : 1.3x improvement , Max latency : 1.5x improvement , Avg latency
: 2.8x improvement

- Better consistency in response times and less jitter and latency with the noisy
neighbour

38

Patch status

Cache Monitoring (CMT) Upstream 4.1.

Cache Allocation(CAT)/CDP for L3 Framework (global clos/cbm
management, hotcpu, hsw, sched
support) good but Cgroup Interface
rejected. (Vikas, Shivappa)
New resctl interface and per-socket closid
support in progress (Fenghua, Yu)

Memory b/w Monitoring Upstream 4.6 (Vikas, Shivappa).

Open stack integration (libvirt update)
Support built for CMT/MBM and CAT
cgroup interface (Qiaowei
qiaowei.ren@intel.com)

Container support (Dockers) Support built for CAT cgroup interface(
Intel)

39

mailto:qiaowei.ren@intel.com

Future Work

• Perf overhead during CQM/MBM

• Support data per-process

• Improve and unify ID management for
RMID/CLOSID

40

References

• [1]
http://www.intel.com/content/www/us/en/co
mmunications/cache-allocation-technology-
white-paper.html

41

http://www.intel.com/content/www/us/en/communications/cache-allocation-technology-white-paper.html

Questions ?

42

Backup

43

Representing cache capacity in Cache
Allocation(example)

Bn B1 B0

Wk

W
(k

-1
)

W3 W2 W1 W0

Capacity
Bitmask

Cache Ways

- Cache capacity represented using ‘Cache bitmask’
- However mappings are hardware implementation specific

44

Bitmask Class of service IDs (CLOS)

B7 B6 B5 B4 B3 B2 B1 B0

CLOS0 A A A A A A A A

CLOS1 A A A A A A A A

CLOS2 A A A A A A A A

CLOS3 A A A A A A A A

B7 B6 B5 B4 B3 B2 B1 B0

CLOS0 A A A A A A A A

CLOS1 A A A A

CLOS2 A A

CLOS3 A A

Default Bitmask – All CLOS ids have all cache

Overlapping Bitmask (only contiguous bits)

45

