Linux QoS framework usage report
for containers and cloud and

challenges ahead
- Vikas Shivappa, Intel

Acknowledgements: Tony Luck, Matt
Fleming, CSIG-Intel

Agenda

 Problem definition

 Why use Kernel QOS framework

* Intel Cache/memory gos support
* Kernel implementation

* Openstack and Container support
* Performance improvement

* Future Work

Without Cache/Memory QoS
framework(quality of service)

High Pri Low Pri

Recreational

Increasing cores
=>Multithreading

Low pri apps may get L3 contention #
more cache

Shared Processor Cache

- Noisy neighbour => Degrade/inconsistency in response => Q0S
difficulties
- HPC

Agenda

* Problem definition

* Why use Kernel QOS framework

* Intel cache/memory qos support
* Kernel implementation

* Openstack and Container support
* Performance improvement

* Future Work

Why use the Cache/Memory QOS
framework?

* User friendly
interfaces :
Perf/cgroup [%
* Abstracts a lot of
architectural/Syst

e m I e V e I d e t a i | S \ QOS Krarnanork Rostracion 3y ex

-

1
<
v

-

1
<
v

With Cache QoS

4 N
apps apps
‘ User space

Kernel Cache QoS T

framework

m h/w ‘
nte W suppor without QoS QoS

3

Controls to allocate the Proc

appropriate cache to Cache
high pri apps

- Help monitor and control shared resources => achieve consistent response =>
better QoS

Agenda

* Problem definition
* Why use Kernel QoS framework

* Intel Cache/Memory QoS support

* Kernel implementation

* Openstack support

* Container support

* Performance improvement
* Future Work

What is Cache/Mem QoS ?

* Cache/Memory b/w
Monitoring

— cache occupancy/mem b/w
per thread

— perf interface

e Cache Allocation

— user can allocate overlapping
subsets of cache to
applications

— cgroup interface (out of tree
only, new interface coming

up)

Intel QoS Terminologies

RDT — Resource director technology

— is basically “Processor QoS” under which the
cmt/cat/mbm etc are all sub-features

CMT — Cache Monitoring Technology or also
called COM

CAT — Cache Allocation Technology
MBM — Memory b/w monitoring

Cache lines <& Thread ID
(Identification)

* Cache Monitoring |

.
— RMID (Resource Monitoring 4 \.
ID) <> PID. '

— RMID tagged to cache lines i
allocated

* Cache Allocation
— CLOSid (Class of service ID)
— Restrict when Cache is filled
 Memory b/w

— RMID <=> Total L3 external
b/w

J
. v,

N

Agenda

* Problem definition

* Existing techniques

 Why use Kernel QOS framework
* |Intel Cache qos support

* Kernel implementation
* Openstack and Container support

* Performance improvement
e Future Work

Kernel Implementation

-

=)

User interface

User Space

Allocation
configuration

Configure
bitmask per
CLOS

During ctx
switch

Set
CLOS/RMID
for thread

Kernel Space

Read Monitored
data

Kernel QOS support

Read
Event
counter

cache / mem b/w
monitoring

Cache alloc

Cgroup fs

Hardware

Shared L3 Cache

L

12

Memory

Memory b/w Monitoring

RMID1...RMIDn

RMID1...RMIDn
CLOSID1...RMIDn

CLOSID1...RMIDn

SocketO Socketl

Local mem b/w

(Cwemcar)
|

I Local mem b/w

I ? > Total mem b/w

I

Memory Memory

MBM implementation continued

e Typically
— sched _in
e prev_count =read_hw_count();
— sched out
 c=read _hw_count();
e count +=c — prev_count;
 Wont work for MBM as we have per package
RMIDs

— Doing the above on 2 core siblings for a PID with
same RMID would result in duplicate count.

MBM hierarchy monitoring

Share RMID1

Sample cgroup (_*_\
hierarchy
Gy o
- Other considerations

- Movement of tasks between

cgroups
G12
- MBM counters overflow

RMID2

G121 e3

- el :should read 10MB

- e2:should read 13MB
- e3:should read 5MB

omMB 1mB 2MB 5MB

MBM hierarchy monitoring

* Implement using periodic updates of the ‘per-
RMID count’ as well a ‘per event count’

* This helps take care of all the scenarios
— Task movement between cgroups
— RMID recycling

— Events start counting the same cgroup at different
times (they only need to read the current event
count)

intel_cgm/local_bytes/ -e intel_ cqmjtntal bytes/ -p 2553

Usage

Basic monitoring per thread cache occupancy/ Mem

C_occupancy

C
Performance counter stats for process id '2553':

8,773,632.00 Bytes intel_cgm/1llc_occupancy/
71,114.49 MB intel_cgm/local_bytes/
71,114.61 MB intel_cgm/total_bytes/

7.022443694 seconds time elapsed

Basic usage example.
Results display the total cache occupancy and total mem b/w for the
thread.

17

Other Usage modes

* Monitor cgroup
* Per socket monitoring

— --per-socket does not work as we are not cpu
event

— —-per-cpu doesn’t work either
— Use —C <cpu in the socketN>
e Systemwide
— Fail if (—a && —t) option (system wide task mode)

Usage Scenarios

* Units that can be monitored for cache/memory
b/w
— Process/tasks

— Virtual machines and cloud (transfer all PIDs of VM to
one cgroup)

— Containers (put the entire container into one cgroup)
* Restrict the noisy neighbour
* Fair cache allocation to resolve cache contention

Agenda

* Problem definition

* Existing techniques

 Why use Kernel QOS framework
* |Intel Cache qos support

* Kernel implementation

* OpenStack / Container support
* Challenges

* Performance improvement
e Future Work

Openstack usage

Applications

Integration % u

Compute Network Storage

4

Open Stack Services

4

Standard hardware

Openstack usage ...

- Libvirt patches submitted (Qiaowei giaowei.ren@intel.com) — based on
kernel QOS framework
- CAT/CMT/MBM was demoed in openstack forums/ conference

o 3 ...
oo ..

—ENTE
Cache QOS

22

mailto:qiaowei.ren@intel.com

Containers support

* Dockers support patch was built to use the
new CAT cgroup

 Was simpler change as dockers and systemd
already have all the plumbing to use cgroups

rumber of cydic test samples for each latency range

Cyclic tests using docker

Cyelic Test results [timeftest: 10m], on: [model name[l: Intel(R) Xeon(R) CPU E5-2626L v3 @ 2.00GHz), graph origin: (id:20150508151902 tag:20150508152059] (Auto-generated)

3.5e+08 T T T T T T
Cyclic Tegt running inside a container{CT), ideal case without ary load
CT with load of 4 contalners running stress-ng with emphasis on cache
CT, load and each stress-ng container is allocated 1/4 of the cache
3e+06 |- =
250406 |- -
2e+06 - 4
15e+06 | —
le+06 | -
500000 |- -
U | 1 1 L 1 1
Q 1 4 9 16 23 36 49 fd

histogram bins representing cyclic test perfermance (latency ranges)

With CAT(green curve) has a more consistent response latency range

comparable to the no-noise scenario (0-16)
Most of the samples falling the 1-9.

AppFormix* — Orchestration with Containers
(Kubernetes)

Workload: NGINX based webserver on Intel Xeon processor E5 v4, 100KB request size

NGINX* Web Server

1200

1000

800

600

400

200

Requests Per Second

0]

M 2S Intel® Xeon® processor E5-2699 v4 (No CAT)

M 2S Intel® Xeon® processor E5-2699 v4 (with CAT)

Performance

(CAT) can prioritize import
VMs - e.g., web server

ant

35

Avg. Response Time (ms)
Y Y N N w
(§;] o (§;] o ul o

o

m 2S Intel® Xeon® processor E5-2699 v4 (No CAT)

M 2S Intel® Xeon® processor E5-2699 v4 (with CAT)

Improved Average Web

Server Latencies

Avg. Response Time (ms)

500
450
400
350
300
250
200
150
100

50

Improved Worst-Case Web
Server Latencies

M 2S Intel® Xeon® processor E5-2699 v4 (No CAT)
M 2S Intel® Xeon® processor E5-2699 v4 (with CAT)

Baseline : NGINX web server, ext. load generation system, 2x Intel® Xeon® processor E5-2699 v4, 2.2GHz, 22¢, 64GB DDR4-2133, 10Gb X540-AT2 NICs. Ubuntu14.04, Kernel v4.4 + RDT Patches.
C1E / turbo disabled. CAT: Restrict “noisy neighbors” : CAT mask 0x00003. “Noisy neighbor” apps: 11 processes /skt of stream, array size 100e6. Ext Load generation system: wg/WRK
running 22 thrds, Ubuntu* 14.04, 2x Intel Xeon processor L5520@ 2.27GHz CPUs, 24GB DDR3-1067 with 10Gb Intel® X540-AT2 NICs. Data Source: Appformix, March 2016

25

UC, Berkley CA RDT usage

10000 4605 4976 4984 4931

F Y
1000
325
100
8.4
10 7 7.3 5567 6.7
36
"| |
M

Efficuts Firewall LP Stats Snort Suricata EndRE

Latencyin Microseconds (log scale)

m With Cache Allocation Technology mWithout Cache Allocation Technology

* Network functions are executing simultaneously on isolated core’s, throughput of
each Virtual Machines is measured

* Min packet size (64 bytes), 100K flows, uniformly distributed

v

OSV adaption status

Intel RDT support status for OSVs
CMT:
= RHEL 7.2 (3.10): merged
= Ubuntu 15.10 (4.2): merged
m S| ES12 SP2 Beta (4.4): finished backporting and test, will merge
= Alibaba, Baidu: Backported and in Testbed
MBM:
®m RHEL 7.3 RC (3.10): finished backporting and test, will merge
® Ubuntu 16.04 (4.4): merged

= Alibaba, Baidu: Backported and in Testbed

CAT, CDP:

= Currently all using out of tree patches. Waiting for upstream patches
® Google : using currently in testbed

= Alibaba, Baidu: Backported and in Testbed

27

Challenges

Openstack, Container next steps

What if we run out of IDs ?

What about Scheduling overhead

Doing monitoring and allocation together

Openstack/container next steps for
CAT/CDP

* kernel CAT cgroup support will remain out of tree

— cgroup Pros

» openstack/dockers other enterprise users like Google could use
the feature on test bed and are ready to adapt

e Was supported by much of community
(Peterz/HPA/dockers/google) for quite sometime.

* |ssues like hierarchy/kernel thread issue was related to cgroup.

— Cons
 Thomas rejected cgroup interface eventually.

* Quickly run out of CLOSIds with cgroup hierarchy, more in v2 —
However reuse had mitigated some of the issues.

* Could not do per socket Closid due to atomic update issue
* Openstack and Dockers CAT support needs a rewrite
to use the new CAT (resctl) interface.

What if we run out of IDs ?

Group tasks together (by
process?)

Group cgroups together
with same mask

return —ENOSPC
Postpone/ Recycle

RMID recycling

* Not really ‘virtual RMIDs’ currently as we
don’t switch RMIDs at context switch.

* For cqm, cache occupancy is still tied to the
RMID after we ‘free” an RMID -> it goes to
imbo list.

e However for MBM , the RMIDs can be used
immediately without waiting for zero
occupancy.

RMID recycling

F — Free state (f- free count)
L — Limbo

A - Allocated

e —event (er- # of required
RMIDs)

32

RMID recycling accuracy

* Current scheme eg:

* The counting time is proportional to the max
RMID to required RMID ratio

* Ex: 80 RMIDs max, 100 required RMIDs

— on average anh event is counted for 80% of time
and missed for 20% of the time

Scheduling performance

* msrread/write costs 250-300 cycles
* Keep a cache. Grouping helps !

34

Monitor and Allocate

 RMID(Monitoring)
CLOSid(allocation)
different

* Monitoring and allocate
same set of tasks easily
— perf cannot monitor the

cache alloc cgroup/ now
resctl(?)

35

Agenda

* Problem definition

* Existing techniques

 Why use Kernel QOS framework
* |Intel Cache qos support

* Kernel implementation

* Challenges

* Performance improvement and
Future Work

Performance Measurement

Intel Xeon based server, 16GB RAM

30MB L3, 24 LPs

RHEL 6.3

With and without cache allocation comparison

Controlled experiment

— PCle generating MSI interrupt and measure time for
response

— Also run memory traffic generating workloads (noisy
neighbour)

Experiment Not using current cache alloc patch

Performance Measurementij

PCle MSI latency test

40

35 1.5x

m Without cache alloc

B With Cache alloc

Latency in us

Min Max Avg

- Minimum latency : 1.3x improvement , Max latency : 1.5x improvement , Avg latency
: 2.8Xx improvement
- Better consistency in response times and less jitter and latency with the noisy

neighbour *

Patch status

Cache Monitoring (CMT) Upstream 4.1.

Cache Allocation(CAT)/CDP for L3 Framework (global clos/cbm
management, hotcpu, hsw, sched
support) good but Cgroup Interface
rejected. (Vikas, Shivappa)

New resctl interface and per-socket closid
support in progress (Fenghua, Yu)

Memory b/w Monitoring Upstream 4.6 (Vikas, Shivappa).

Support built for CMT/MBM and CAT
Open stack integration (libvirt update) cgroup interface (Qiaowei
giaowei.ren@intel.com)

Container support (Dockers) Support built for CAT cgroup interface(

Intel) .

mailto:qiaowei.ren@intel.com

Future Work

* Perf overhead during CQM/MBM
* Support data per-process

* Improve and unify ID management for
RMID/CLOSID

References

* [1]
http://www.intel.com/content/www/us/en/co
mmunications/cache-allocation-technology-

white-paper.html

41

http://www.intel.com/content/www/us/en/communications/cache-allocation-technology-white-paper.html

Questions ?

Backup

Representing cache capacity in Cache
Allocation(example)

Bitmask

iﬁ-iili o

- Cache capacity represented using ‘Cache bitmask’
- However mappings are hardware implementation specific

44

Bitmask < Class of service IDs (CLOS)

Default Bitmask — All CLOS ids have all cache

|7 [B6 |BS B2 B3 /B2 Bl [BO _

> > > P
> > > P
> > > >
> x> > P
> x> > P
> > > P
> > > P
> x> > P

Overlapping Bitmask (only contiguous bits)

|7 [Bs |BS B2 B3 /B2 Bl [BO _
A A A A A A A

A

45

