

Pulsar

Realtime Analytics At Scale

Tony Ng April 14, 2015

Big Data Trends

- Bigger data volumes
- More data sources
 - -DBs, logs, behavioral & business event streams, sensors ...
- Faster analysis
 - Next day to hours to minutes to seconds
- Newer processing models
 - -MR, in-memory, stream processing, Lambda ...

What is Pulsar

Open-source real-time analytics platform and stream processing framework

Business Needs for Real-time Analytics

- Near real-time insights
- React to user activities or events within seconds
- Examples:
 - Real-time reporting and dashboards
 - Business activity monitoring
 - Personalization
 - Marketing and advertising
 - Fraud and bot detection



Systemic Quality Requirements

Scalability

– Scale to millions of events / sec

Latency

-<1 sec delivery of events</p>

Availability

- No downtime during upgrades
- Disaster recovery support across data centers

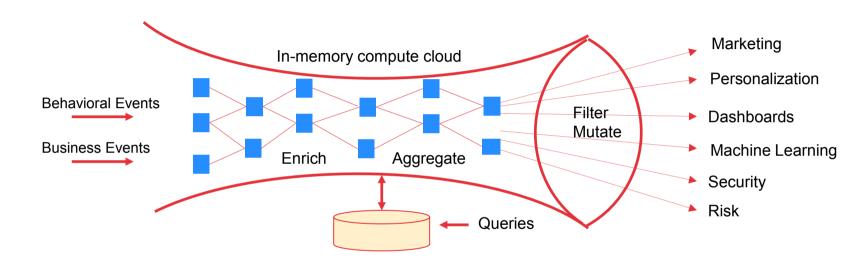
Flexibility

- User driven complex processing rules
- Declarative definition of pipeline topology and event routing

Data Accuracy

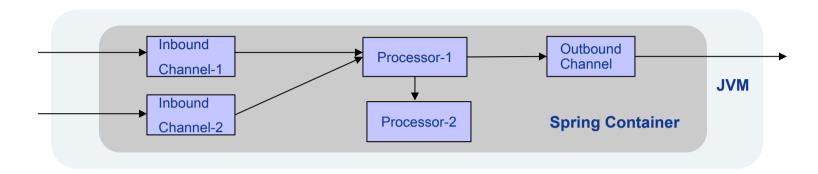
- Should deal with missing data
- 99.9% delivery guarantee

Pulsar Real-time Analytics



- Complex Event Processing (CEP): SQL on stream data
- Custom sub-stream creation: Filtering and Mutation
- In Memory Aggregation: Multi Dimensional counting

Pulsar Framework Building Block (CEP Cell)

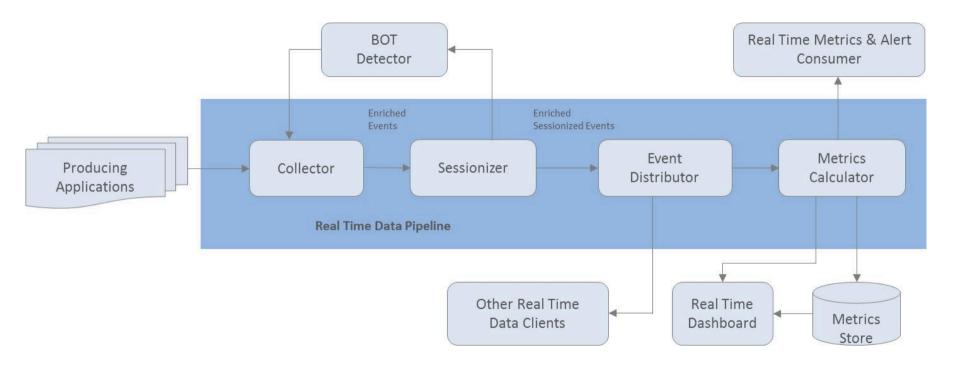


- Event = Tuples (K,V) Mutable
- Channels: Message, File, REST, Kafka, Custom
- Event Processor: Esper, RateLimiter, RoundRobinLB, PartitionedLB, Custom

Pulsar Framework Flexibility

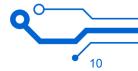
- Stream Processing Pipeline
 - Consist of loosely coupled stages (cluster of CEP cells)
 - CEP cells (channels and processors) configured as Spring beans
 - Declarative wiring of CEP cells to define pipeline
 - Each stage can adopt its own release and deployment cycles
 - Support topology changes without pipeline restart
- Stream Processing Logic
 - Two approaches: Java or SQL-like syntax through Esper integration
 - SQL statements can be hot deployed without restarting applications

Pulsar Real-time Analytics Pipeline



Complex Event Processing in Real-time Analytics Pipeline

- Enrichment
- Filtering and mutation
- Analysis over windows of time (rolling vs. tumbling)
 - Aggregation
 - Grouping and ordering
- Stateful processing
- Integration with other systems



Event Filtering and Routing Example

```
insert into SUBSTREAM select D1, D2, D3, D4
from RAWSTREAM where D1 = 2045573 or D2 = 2047936 or D3 = 2051457 or D4 = 2053742; // f
iltering
@PublishOn(topics="TOPIC1") // publish sub stream at TOPIC1
@OutputTo("OutboundMessageChannel")
@ClusterAffinityTag(column = D1); // partition key based on column D1
select * FROM SUBSTREAM;
```


Aggregate Computation Example

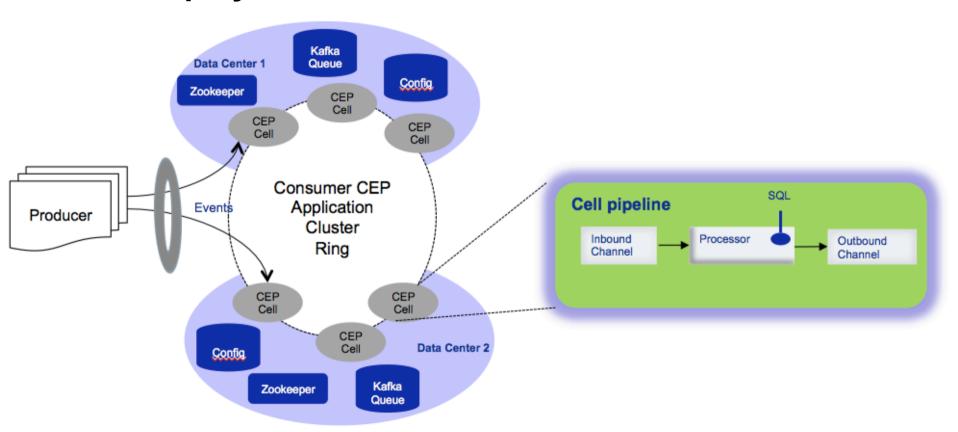
```
// create 10-second time window context
create context MCContext start @now end pattern [timer:interval(10)];
// aggregate event count along dimension D1 and D2 within specified time window
context MCContext insert into AGGREGATE select count(*) as METRIC1, D1, D2 FROM RAWSTRE
AM group by D1,D2 output snapshot when terminated;
select * from AGGREGATE;
```


TopN Computation Example

```
// create 60-second time window context
create context MCContext start @now end pattern [timer:interval(60)];
// sort to find top 10 event counts along dimensions D1, D2, and D3
// within specified time window
context MCContext insert into TOPITEMS select count(*) as totalCount, D1, D2, D3 from R
awEventStream group by D1, D2, D3 order by count(*) limit 10;
select * from TOPITEMS;
```

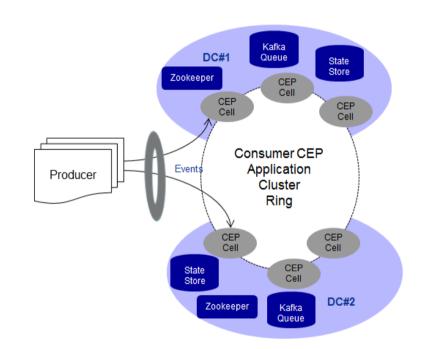
- TopN computation can be expensive with high cardinality dimensions
- Consider approximate algorithms
- Implemented as aggregate functions e.g. select ApproxTopN(10, D1, D2, D3)

Pulsar Deployment Architecture



Availability And Scalability

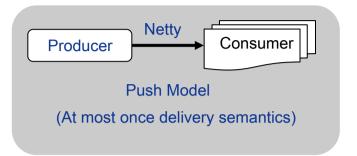
- Self Healing
- Datacenter failovers
- State management
- Shutdown Orchestration
- Dynamic Partitioning
- Elastic Clusters
- Dynamic Flow Routing
- Dynamic Topology Changes

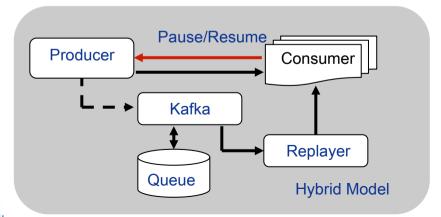


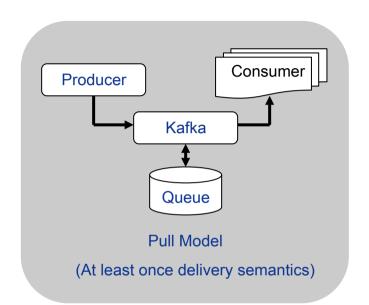
Pulsar Integration with Kafka

- Kafka
 - Persistent messaging queue
 - High availability, scalability and throughput
- Pulsar leveraging Kafka
 - Supports pull and hybrid messaging model
 - Loading of data from real-time pipeline into Hadoop and other metric stores

Messaging Models







Pulsar Integration with Kylin

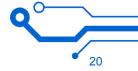
- Apache Kylin
 - Distributed analytics engine
 - Provide SQL interface and multi-dimensional analysis (OLAP) on Hadoop
 - Support extremely large datasets
- Pulsar leveraging Kylin
 - Build multi-dimensional OLAP cube over long time period
 - Aggregate/drill-down on dimensions such as browser, OS, device, geo location
 - Capture metrics such as session length, page views, event counts

Pulsar Integration with Druid

- Druid
 - Real-time ROLAP engine for aggregation, drill-down and slice-n-dice
- Pulsar leveraging Druid
 - Real-time analytics dashboard
 - Near real-time metrics like number of visitors in the last 5 minutes, refreshing every 10 seconds
 - Aggregate/drill-down on dimensions such as browser, OS, device, geo location

Key Takeaways

- Creating pipelines declaratively
- SQL driven processing logic with hot deployment of SQL
- Framework for custom SQL extensions
- Dynamic partitioning and flow control
- •< 100 millisecond pipeline latency
- •99.99% Availability
- •< 0.01% steady state data loss</p>
- Cloud deployable



Future Development and Open Source

- Real-time reporting API and dashboard
- Integration with Druid and other metrics stores
- Session store scaling to 1 million insert/update per sec
- Rolling window aggregation over long time windows (hours or days)
- Dynamic Joins with graphs and RDBMS tables
- Hot deployment of Java source code

More Information

- GitHub: http://github.com/pulsarIO
 - -repos: pipeline, framework, docker files
- Website: http://gopulsar.io
 - Technical whitepaper
 - Getting started
 - Documentation
- Google group: http://groups.google.com/d/forum/pulsar

Appendix

Twitter Storm/Spark Streaming vs Pulsar – Key Differences

Requirement	Pulsar	Storm/Trident	Spark Streaming
Declarative Pipeline Wiring	Yes	No	No
Pipeline stitching	Run time	Build time	Build time
Topology change requires reboot	No	Yes	Yes
SQL support	Yes	No	Yes*
Hot deployment of processing rules	Yes	No	No
Guaranteed Message Processing	Yes (batching)	Yes	Yes
Pipeline Flow Control	Yes	?	?
Stateful Processing	Yes	Yes	Yes

