
Rootless Containers 
with runC

Aleksa Sarai
Software Engineer
asarai@suse.de



Who am I?
● Software Engineer at SUSE.

● Student at University of Sydney.
– Physics and Computer Science.

● Maintainer of runC.

● Long-time Docker contributor and user.

● Free Software advocate.

2



The Problem 
● Researcher wants to run some Python 3 code on a computing 

cluster.
– The cluster only supports Python 2.

● So, researcher uses a container to package Python 3 – right?
– Drat! The administrator doesn’t want to install any new-fangled software.

● The researcher tries to compile dependencies from scratch.
– Ha, ha. Don’t even get me started.

● So, what should the researcher do?
– What if we could create and run containers without any privileges?

3



What are Linux containers made of?
● Short answer: Namespaces.

– cgroups are not really required.

● Long answer: A lot of duct tape, and some Linux Namespaces.

● They isolate a process’s view of parts of the system.
– Except the things that don’t have namespaces. Like the kernel keyring.

● The most interesting of which is the user namespace.
– You can “pretend” that an unprivileged user is root.

4



Unprivileged User Namespaces
● Since Linux 3.8, unprivileged users can create user namespaces.

– It’s been mostly safe* since Linux 3.19.

● All other namespaces are pinned to a user namespace.
– You can create a fully namespaced environment without privileges!

– Operations in the namespaces are more restricted than usual.

● Only your user and group are mapped.

5



The Solution
● Get a container runtime to implement rootless containers.

– Disable features in the runtime until the container runs!

● … or you can just do it manually:
– unshare -UrmunipCf bash

– mount --make-rprivate / && mount --rbind rootfs/ rootfs/

– mount -t proc proc rootfs/proc

– mount -t tmpfs tmpfs rootfs/dev

– mount -t devpts -o newinstance devpts rootfs/dev/pts

– # ... skipping over a lot more mounting ...

– pivot_root rootfs/ rootfs/.pivot_root && cd /

– mount --make-rprivate /.pivot_root && umount -l /.pivot_root

– exec bash # finally

6



What works?
● All basic functionality works with rootless containers.

7

Working Broken
run checkpoint [criu]

exec restore [criu]

kill pause [cgroups]

delete resume [cgroups]

list events [cgroups]

state ps [cgroups]

spec Detached containers [console]

create

start



Demo time!

8

May the demo gods have mercy.



Consoles and runC
● Pseudo-TTY allocation is done using the host’s /dev/ptmx.

– This can break in user namespaces.

● This is a long-standing bug in libcontainer.
– Responsible for breaking sudo in Docker for years.

● We need this to run our integration tests, and for create / start.

● Solution: Do the allocation in the container and send a file 
descriptor over an AF_UNIX socket.

9



remainroot(1)
● Certain syscalls will always fail inside a rootless container.

– setuid(2), setgid(2), chown(2), setgroups(2), mknod(2), etc.

● Others will give confusing results.
– getgroups(2), waitid(2), etc.

● Package managers and other tools can’t “drop privileges”.
– But we don’t have any privileges!

● Solution: Write a tool to emulate GNU/Linux’s privilege model 
using ptrace(2).

– Currently works for most things, needs some more shims.

– https://github.com/cyphar/remainroot

10

https://github.com/cyphar/remainroot


What about cgroups?
● cgroup access control is essentially a virtual filesystem.

– Everything under /sys/fs/cgroup is owned by root and has chmod go-w.

● But most cgroupv1 controllers are hierarchical!
– And cgroupv2 is entirely hierarchical, by design.

– So why don’t we have unprivileged subtree management?

● We need cgroups for a lot of different runC operations.

● Solution: Submit kernel patches that implement unprivileged 
subtree management.

– Submitted and rejected.

● This would be useful for regular processes too (think Chromium).

11



Networking
● Unprivileged network namespaces aren’t useful.

– They only have a loopback interface.

● To create a link to the host’s interface, you need CAP_NET_ADMIN in 
the host user namespace.

● Solution: Don’t unshare the network namespace – use the host’s.
– This means you don’t get to use iptables(8).:

– … but at least you get network access!

● There’s some movement in the kernel to fix this problem.

12



Other things left to do
● ps uses cgroups to get the list of processes in a container.

– Solution: More AF_UNIX socket magic.

● checkpoint and restore are currently disabled.
– CRIU 2.0 has support for unprivileged checkpointing.

● Not sure if it correctly checkpoints a rootless container.

– Unprivileged restore is on the roadmap.

● Whilst cgroups are not generally solved, we can use them 
opportunistically.

– If we have write access to a controller, we should use it.

13



Show me the code!
● Everything is in this pull request: opencontainers/runc#774.

– Please help us test this!

– Still needs some review and cleaning up.

● “When will this be finished?”
– How many additional features do you need working?

14

https://github.com/opencontainers/runc/pull/774


Questions?

15




	Slide10
	Slide11
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide19
	Slide 9
	Slide 10
	Slide 11
	Slide 12
	Slide 13
	Slide 14
	Slide20
	Slide22

