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 High Performance Storage with
blk-mq and scsi-mq

Christoph Hellwig



Problem Statement

 The Linux storage stack doesn't scale:
– ~ 250,000 to 500.000 IOPS per LUN
– ~ 1,000,000 IOPS per HBA
– High completion latency
– High lock contention and cache line bouncing
– Bad NUMA scaling



Linux SCSI Performance
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Linux Storage Stack - Issues

 The Linux block layer can't handle high IOP or low 
latency devices
– All the block layer?



Linux Storage Stack
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Linux Storage Stack – Issues (2)

 The request layer can't handle high IOPS or low 
latency devices

 Vendors work around by implementing 
make_request based drivers
– Lots of code duplication
– Missing features

 SCSI drivers are tied into the request framework



Linux Storage Stack – blk-mq

 A replacement for the request layer
– First prototyped in 2011
– Merged in Linux 3.13 (2014)

 Not a drop-in replacement
– Different driver API
– Different queuing model (push vs pull)



Blk-mq – architecture

 Processes dispatch into per-cpu software queues
 Software queues map to hardware issue queues

– In the optimal case:
• N(hardware queues) = N(CPU cores)

– For now the most common case is::
• N(hardware queues) = 1



Blk-mq I/O submission path
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Blk-mq – request allocation and tagging

 Provides combined request allocation and tagging
– Requests are allocated at initialization
– Requests are indexed by the tag
– Tag and request allocation are combined

 Avoids per-request allocations in the driver
– Driver data in “slack” space behind request
– S/G list is part of driver data



Blk-mq – I/O completions

 Uses IPIs to complete on the submitting node and  
avoid false cache line sharing
– Can be disabled, or forced to the submitting 

core
 Old request code provided similar functionality

– Non-integrated additional functionality
– Uses software interrupts instead of IPIs



Prototype for blk-mq usage in SCSI

 First “scsi-mq” prototype from Nic Bellinger 
– Published in late 2012
– Used early blk-mq to drive SCSI
– Demonstrated millions of IOPS
– Required (small) changes to drivers
– Only using a single hardware queue
– Did not support various existing SCSI stack 

features



Production design for blk-mq in SCSI

 Should be a drop in replacement
– Must support full SCSI stack functionality
– Must not require driver API changes
– Driver should not be tied to blk-mq

 Should avoid code duplication
– Push as much as possible work to blk-mq
– Refactor SCSI code to avoid separate code paths 

as much as possible



Production design for blk-mq in SCSI -
Request allocation and tagging

 Considerations for request and tag allocation:
– Allocating a request for each per-LUN tag would 

inflate memory usage
– Various hardware requires per-host tags anyway

 Thus went with blk-mq changes to allow per-host 
tag sets



Production design for blk-mq in SCSI -
S/G lists

 Modern SCSI HBAs allow for huge S/G lists
– Linux supports up to 2048 S/G list entries, 

which require 56 KiB of S/G list structures
– We don't want to preallocate that much

 Preallocate a single 128 entry chunk
– Enough for most latency sensitive small I/O
– The rest is dynamically allocated as needed
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Blk-mq work driven by SCSI

 Transparent pre/post-flush request handling
 Head of queue request insertion
 Partial completion support
 BIDI request support
 Shared tag space between multiple request_queues
 Better support for requeuing from IRQ context
 Lots of bugfixes and small features / cleanups 



SCSI preparation for blk-mq

 New cmd_size field in host template
– Allows to allocate per-driver command data 

 Host-lock reductions
– Elimination of host-wide spinlocks in I/O 

submission and completion
  Upper level driver refactoring

– Avoids legacy request layer interaction
– Provides a cleaner drivers abstraction



SCSI blk-mq status

 Required blk-mq features included in Linux 3.16
 Preparatory SCSI work merged in Linux 3.16
 Blk-mq support for SCSI merged in Linux 3.17

– Must be enabled by scsi_mod.use_blk_mq=Y 
boot option

– Does not work with dm-multipath
 Big distributions include preparatory patches
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SCSI profiling data

 46.13%  [kernel]                 [k] _spin_lock_irq
 26.92%  [kernel]                 [k] _spin_lock_irqsave
  9.32%  [kernel]                 [k] _spin_lock
  0.47%  [kernel]                 [k] kmem_cache_alloc
  0.45%  [kernel]                 [k] scsi_request_fn
  0.39%  [kernel]                 [k] _spin_unlock_irqrestore
  0.33%  [kernel]                 [k] kref_get
  0.32%  [kernel]                 [k] __blockdev_direct_IO_newtrunc
  0.32%  [kernel]                 [k] kmem_cache_free
  0.30%  [kernel]                 [k] native_write_msr_safe

 46.13%  [kernel]                 [k] _spin_lock_irq
 26.92%  [kernel]                 [k] _spin_lock_irqsave
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  0.39%  [kernel]                 [k] _spin_unlock_irqrestore
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  0.32%  [kernel]                 [k] __blockdev_direct_IO_newtrunc
  0.32%  [kernel]                 [k] kmem_cache_free
  0.30%  [kernel]                 [k] native_write_msr_safe

  2.67%  [kernel]             [k] do_blockdev_direct_IO
  2.60%  [kernel]             [k] __bt_get
  2.43%  [kernel]             [k] __blk_mq_run_hw_queue
  2.07%  [kernel]             [k] put_compound_page
  1.87%  [kernel]             [k] __blk_mq_alloc_request
  1.60%  [kernel]             [k] _raw_spin_lock
  1.59%  [kernel]             [k] kmem_cache_alloc
  1.58%  [kernel]             [k] scsi_queue_rq
  1.44%  [kernel]             [k] _raw_spin_lock_irqsave
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Linux SCSI Performance
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SCSI blk-mq status - near term work

 Better way to select blk-mq vs legacy code path
– Compile time option added for 3.18-rc

 We would like to fully replace the old SCSI I/O path 
with the blk-mq one.

 Missing features:
– I/O scheduler support in blk-mq
– multipath support (prototype exists now)



Exposing multiple HW queues to SCSI 
drivers

 SCSI core so far only exposes a single queue
– Some drivers are ready for multiple queues
– So far do internal queue mapping

 Design for tag allocation:
– We want per-queue tag allocations for scalability 

reasons
– Add a queue prefix to the Tag
– Work done by Bart van Assche, likely to be 

merged for Linux 3.19 



Future work – better integration

 Expose more blk-mq flags to SCSI
– Request merge control
– better command allocation/freeing hooks
– Reserved tags for HBA use



Future work - longer term research

 Further reduction of shared cache lines:
– let blk-mq handle per-host queuing limits
– let hardware handle per-LUN or per-target 

queuing limits
 Map multiple LUNs (request_queues) to the same 

blk-mq contexts



References

 Benchmarks:
– Bart van Assche (Fusion-io / Sandisk):

• https://docs.google.com/file/d/0B1YQOreL3_FxWmZfbl8xSzRfdGM/edit?pli=1

– Robert Elliott (HP):
• http://marc.info/?l=linux-kernel&m=140313968523237&w=2

https://docs.google.com/file/d/0B1YQOreL3_FxWmZfbl8xSzRfdGM/edit?pli=1
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Questions?
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