
2014 Storage Developer Conference. © Insert Your Company Name. All Rights Reserved.

 High Performance Storage with
blk-mq and scsi-mq

Christoph Hellwig

Problem Statement

 The Linux storage stack doesn't scale:
– ~ 250,000 to 500.000 IOPS per LUN
– ~ 1,000,000 IOPS per HBA
– High completion latency
– High lock contention and cache line bouncing
– Bad NUMA scaling

Linux SCSI Performance

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16
0

100,000

200,000

300,000

400,000

500,000

600,000

700,000

800,000

900,000

fio 4k random read performance - RAID HBA with 16 SAS SSDs

Linux 2.6.32

LUNs

A
g

g
re

g
a

te
 IO

P
S

Linux Storage Stack - Issues

 The Linux block layer can't handle high IOP or low
latency devices
– All the block layer?

Linux Storage Stack

HW driver

Device mapper,
Software RAID

Request layer

SCSI layer

HW driver HW driverHW driver

BIO submission

Linux Storage Stack – Issues (2)

 The request layer can't handle high IOPS or low
latency devices

 Vendors work around by implementing
make_request based drivers
– Lots of code duplication
– Missing features

 SCSI drivers are tied into the request framework

Linux Storage Stack – blk-mq

 A replacement for the request layer
– First prototyped in 2011
– Merged in Linux 3.13 (2014)

 Not a drop-in replacement
– Different driver API
– Different queuing model (push vs pull)

Blk-mq – architecture

 Processes dispatch into per-cpu software queues
 Software queues map to hardware issue queues

– In the optimal case:
• N(hardware queues) = N(CPU cores)

– For now the most common case is::
• N(hardware queues) = 1

Blk-mq I/O submission path

Processes

Software contexts
(per-CPU)

Hardware contexts
(based on HW capabilities)

HBA

Blk-mq – request allocation and tagging

 Provides combined request allocation and tagging
– Requests are allocated at initialization
– Requests are indexed by the tag
– Tag and request allocation are combined

 Avoids per-request allocations in the driver
– Driver data in “slack” space behind request
– S/G list is part of driver data

Blk-mq – I/O completions

 Uses IPIs to complete on the submitting node and
avoid false cache line sharing
– Can be disabled, or forced to the submitting

core
 Old request code provided similar functionality

– Non-integrated additional functionality
– Uses software interrupts instead of IPIs

Prototype for blk-mq usage in SCSI

 First “scsi-mq” prototype from Nic Bellinger
– Published in late 2012
– Used early blk-mq to drive SCSI
– Demonstrated millions of IOPS
– Required (small) changes to drivers
– Only using a single hardware queue
– Did not support various existing SCSI stack

features

Production design for blk-mq in SCSI

 Should be a drop in replacement
– Must support full SCSI stack functionality
– Must not require driver API changes
– Driver should not be tied to blk-mq

 Should avoid code duplication
– Push as much as possible work to blk-mq
– Refactor SCSI code to avoid separate code paths

as much as possible

Production design for blk-mq in SCSI -
Request allocation and tagging

 Considerations for request and tag allocation:
– Allocating a request for each per-LUN tag would

inflate memory usage
– Various hardware requires per-host tags anyway

 Thus went with blk-mq changes to allow per-host
tag sets

Production design for blk-mq in SCSI -
S/G lists

 Modern SCSI HBAs allow for huge S/G lists
– Linux supports up to 2048 S/G list entries,

which require 56 KiB of S/G list structures
– We don't want to preallocate that much

 Preallocate a single 128 entry chunk
– Enough for most latency sensitive small I/O
– The rest is dynamically allocated as needed

2014 Storage Developer Conference. © Christoph Hellwig. All Rights Reserved.

Blk-mq work driven by SCSI

 Transparent pre/post-flush request handling
 Head of queue request insertion
 Partial completion support
 BIDI request support
 Shared tag space between multiple request_queues
 Better support for requeuing from IRQ context
 Lots of bugfixes and small features / cleanups

SCSI preparation for blk-mq

 New cmd_size field in host template
– Allows to allocate per-driver command data

 Host-lock reductions
– Elimination of host-wide spinlocks in I/O

submission and completion
 Upper level driver refactoring

– Avoids legacy request layer interaction
– Provides a cleaner drivers abstraction

SCSI blk-mq status

 Required blk-mq features included in Linux 3.16
 Preparatory SCSI work merged in Linux 3.16
 Blk-mq support for SCSI merged in Linux 3.17

– Must be enabled by scsi_mod.use_blk_mq=Y
boot option

– Does not work with dm-multipath
 Big distributions include preparatory patches

Linux SCSI Performance

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16
0

200,000

400,000

600,000

800,000

1,000,000

1,200,000

fio 512 byte random read performance - RAID HBA with 16 SAS SSDs

Linux 2.6.32

3.17-rc3 (with blk-mq)

LUNs

A
g

g
re

g
a

te
 IO

P
S

Note: HBA maxes out at about 1 million IOPS

SCSI profiling data

 46.13% [kernel] [k] _spin_lock_irq
 26.92% [kernel] [k] _spin_lock_irqsave
 9.32% [kernel] [k] _spin_lock
 0.47% [kernel] [k] kmem_cache_alloc
 0.45% [kernel] [k] scsi_request_fn
 0.39% [kernel] [k] _spin_unlock_irqrestore
 0.33% [kernel] [k] kref_get
 0.32% [kernel] [k] __blockdev_direct_IO_newtrunc
 0.32% [kernel] [k] kmem_cache_free
 0.30% [kernel] [k] native_write_msr_safe

 46.13% [kernel] [k] _spin_lock_irq
 26.92% [kernel] [k] _spin_lock_irqsave
 9.32% [kernel] [k] _spin_lock
 0.47% [kernel] [k] kmem_cache_alloc
 0.45% [kernel] [k] scsi_request_fn
 0.39% [kernel] [k] _spin_unlock_irqrestore
 0.33% [kernel] [k] kref_get
 0.32% [kernel] [k] __blockdev_direct_IO_newtrunc
 0.32% [kernel] [k] kmem_cache_free
 0.30% [kernel] [k] native_write_msr_safe

 2.67% [kernel] [k] do_blockdev_direct_IO
 2.60% [kernel] [k] __bt_get
 2.43% [kernel] [k] __blk_mq_run_hw_queue
 2.07% [kernel] [k] put_compound_page
 1.87% [kernel] [k] __blk_mq_alloc_request
 1.60% [kernel] [k] _raw_spin_lock
 1.59% [kernel] [k] kmem_cache_alloc
 1.58% [kernel] [k] scsi_queue_rq
 1.44% [kernel] [k] _raw_spin_lock_irqsave

 2.67% [kernel] [k] do_blockdev_direct_IO
 2.60% [kernel] [k] __bt_get
 2.43% [kernel] [k] __blk_mq_run_hw_queue
 2.07% [kernel] [k] put_compound_page
 1.87% [kernel] [k] __blk_mq_alloc_request
 1.60% [kernel] [k] _raw_spin_lock
 1.59% [kernel] [k] kmem_cache_alloc
 1.58% [kernel] [k] scsi_queue_rq
 1.44% [kernel] [k] _raw_spin_lock_irqsave

Linux 2.6.32

Linux 3.17-rc3
(with blk-mq)

Linux SCSI Performance

1 2 4 6 8
0

200,000

400,000

600,000

800,000

1,000,000

1,200,000

1,400,000

0%

10%

20%

30%

40%

50%

60%

70%

80%

90%

100%

110%

120%

130%

140%

Multiple LUN performance, single threaded - SRP attached null_io target

3.14.3 3.16+ 3.16+ (with blk-mq)

LUNs

IO
P

S

C
P

U
 u

s
a

g
e

Note: Target overload in 8 LUN case prevents linear scaling

Linux SCSI Performance

random read, 12 threads random write, 12 threads random read, 1 thread random write, 1 thread
0

200,000

400,000

600,000

800,000

1,000,000

1,200,000

1,400,000

Single LUN performance - SRP attached null_io target

3.14.3

3.16+

3.16+ (with blk mq)IO
P

S

SCSI blk-mq status - near term work

 Better way to select blk-mq vs legacy code path
– Compile time option added for 3.18-rc

 We would like to fully replace the old SCSI I/O path
with the blk-mq one.

 Missing features:
– I/O scheduler support in blk-mq
– multipath support (prototype exists now)

Exposing multiple HW queues to SCSI
drivers

 SCSI core so far only exposes a single queue
– Some drivers are ready for multiple queues
– So far do internal queue mapping

 Design for tag allocation:
– We want per-queue tag allocations for scalability

reasons
– Add a queue prefix to the Tag
– Work done by Bart van Assche, likely to be

merged for Linux 3.19

Future work – better integration

 Expose more blk-mq flags to SCSI
– Request merge control
– better command allocation/freeing hooks
– Reserved tags for HBA use

Future work - longer term research

 Further reduction of shared cache lines:
– let blk-mq handle per-host queuing limits
– let hardware handle per-LUN or per-target

queuing limits
 Map multiple LUNs (request_queues) to the same

blk-mq contexts

References

 Benchmarks:
– Bart van Assche (Fusion-io / Sandisk):

• https://docs.google.com/file/d/0B1YQOreL3_FxWmZfbl8xSzRfdGM/edit?pli=1

– Robert Elliott (HP):
• http://marc.info/?l=linux-kernel&m=140313968523237&w=2

https://docs.google.com/file/d/0B1YQOreL3_FxWmZfbl8xSzRfdGM/edit?pli=1
http://marc.info/?l=linux-kernel&m=140313968523237&w=2

Thanks

 Fusion-io (now a Sandisk company)
– For sponsoring the blk-mq in SCSI work

 Jens Axboe
– For code and slide review, and blk-mq itself

 Bart van Assche, Robert Elliott
– For code and slide review as well as benchmark

data

Questions?

	Slide 1
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11
	Slide 12
	Slide 13
	Slide 14
	Slide 15
	Slide 16
	Slide 17
	Slide 18
	Slide 19
	Slide 20
	Slide 21
	Slide 22
	Slide 23
	Slide 24
	Slide 25
	Slide 26
	Slide 27
	Slide 28
	Slide 29

