ARMVvV8.3 Pointer Authentication

ARM Mark Rutland <mark.rutland@arm.com>

Linux Security Summit
September 14, 2017

© ARM 2017

Background

= Memory protections are commonly deployed today
... largely prevents code injection

= Focus has shifted to code reuse attacks
.. e.g. ROP, JOP

= Various mitigations today
.. e.g. ASLR, execute-only memory, CFl, canaries, pointer mangling, shadow stacks
.. not as widely deployed
.. can be difficult to integrate
.. can have non-trivial performance / code size impact

.. can inhibit debugging

2 © ARM 2017 ARM

Pointer authentication

= Optional ARMv8.3-A extension

= Detects illicit modification of pointers (and data structures)
... can be used to catch ROP, etc
... simple to integrate
... with minimal code size / performance impact

= Backwards compatible subset
... binaries using some features can run on any ARMv8-A CPU (without protection)
.. so distributions only need one set of binaries

3 © ARM 2017 ARM

ROP protection example
pacliasp

stp fp, 1lr, [sp, #-FRAME SIZE]!
mov fp, sp

< function body >

ldp fp, lr, [sp], #FRAME SIZE

autiasp
ret

4 © ARM 2017 ARM

Theory

5 © ARM 2017 ARM

6

Pointer authentication basics

= New instructions to sign and authenticate pointers
... against a user-chosen (dynamic) context
... €.g. return address is valid for a given stackframe
... architecture provides mechanism, not policy

= Uses a Pointer Authentication Code (PAC)
... authentication metadata stored within pointer
.. so no additional space required

© ARM 2017

ARM

Pointer Authentication Codes

= Each PAC is derived from:

= A pointer value
= A 64-bit context value
= A 128-bit secret key
= PAC algorithm P can be:
* QARMA'
= IMPLEMENTATION DEFINED

= Instructions hide the algorithm details

'https://eprint.iacr.org/20 1 6/444.pdf

7 © ARM 2017 ARM

8

Keys

= Secret 128-bit value
.. inhibit prediction / forging of PACs
* Held in system registers
... can be used, but not read/written at ELO (userspace)

... limited risk of disclosure / modification
= Several keys:

= APIAKey, APIBKey (instruction pointers)
= APDAKey, APDBKey (data pointers)
= APGAKey (data)

© ARM 2017

ARM

9

Pointers in AArché4

63

56

55

54

VA SIZE

VA SIZE-1

© ARM 2017

address
reserved
low/high
tag/reserved

ARM

Pointers in AArché4 (with authentication)

= PAC embedded in reserved pointer bits
... e.g. 7 bits with 48-bit VA with tagging

... leaving remaining bits intact

63 56,55 54 VA SIZE VA SIZE-1 0

7777777777777 7777777777777 7 A
A Y
777777 777 77

277777 X R
777777 7 W
277777 7 R
2y 72077
oy g oz ‘s 17777
R
777777077777777272777277277

‘ % address

reserved
low/high
tag

10 © ARM 2017 ARM

Pointers in AArché4 (with authentication)

= PAC embedded in reserved pointer bits
... e.g. 15 bits with 48-bit VA without tagging
... leaving remaining bits intact

63 56,55 54 VA SIZE VA SIZE-1 0

00777777777777777 007777777777727222.,00
W~y / Y~y o)
2 2 2200 %
I INE R % G A s
¥ A A G i & A G
Y it 7070 Y 5 100000
0% ; 2 X 7
A i A L iR
0090005000000020000 2007000500000000000000004

.

address
reserved
low/high

reserved

I © ARM 2017 ARM

Operations: sign

= PAC* instructions sign pointers with PACs

* Result is not a usable pointer

Pointer)
Context PAC]—b@—b[Pointer + PAC]

[Key

Y

Vo

12 © ARM 2017 ARM

Operations: authenticate

= AUT* instructions authenticate PACs
= If PAC matches, result is the original pointer

= If PAC doesn’t match, result is an invalid pointer — faults upon use

[Pointer + PAC] } \;—P[Pointer]

[Context PAC

X
[Key L>[Ir1valid pointer]

13 © ARM 2017

ARM

Operations: strip

= XPAC* instructions strip PACs
= Result is the original pointer

= No authentication is performed

[Pointer + PAC]—P@—P[Pointer

14 © ARM 2017

ARM

Usage

15 © ARM 2017 ARM

ROP vulnerable code

stp fp, lr, [sp, #-FRAME SIZE]!
mov fp, sp

< function body >

ldp fp, 1lr, [spl, #FRAME SIZE
ret 1lr

16 © ARM 2017 ARM

ROP protection
pacia lr, sp

stp fp, lr, [sp, #-FRAME SIZE]!
mov fp, sp

< function body >

ldp fp, 1lr, [spl, #FRAME SIZE
autia 1lr, sp
ret 1r

17 © ARM 2017 ARM

ROP protection (backwards compatible)
pacilasp

stp fp, lr, [sp, #-FRAME SIZE]!
mov fp, sp

< function body >

ldp fp, 1lr, [spl, #FRAME SIZE

autiasp
ret 1lr

18 © ARM 2017 ARM

Other uses

= Many potential uses / contexts:

* locally-scoped pointers / stackframe

= PLTs/PLT address (dynamic link time)

= opaque pointers / logical type, owner
= Architecture provides mechanism, not policy
= needs careful consideration of reuse attacks
= Need to avoid signing gadgets

= May require multiple keys for distinct purposes

19 © ARM 2017

ARM

Software support

20 © ARM 2017 ARM

Linux Kernel

= RFCs? posted

= Enables userspace use
... per-process APTAKey initialized at exec() time
... context-switched by kernel
. retained across fork()

= Ptrace interface to find PAC bits (but not keys)
= Basic KVM support

* No kernelspace pointer authentication (yet)

Zhteps://lkml.kernel.org/r/ 1 491232765-32501 - | -git-send-email-mark.rutland@arm.com
3https://lkml.kernel.org/r/ | 500480092-28480- | -git-send-email-mark.rutland@arm.com

21 © ARM 2017 ARM

Toolchain

= Upstream GCC 7 supports -msign-return-address=[non-leaf | all]
.. uses APIAKey, backwards-compatible instructions (by default)

= GDB support pending kernel ptrace patches
= Thanks to Jiong Wang, Yao Qi

22 © ARM 2017 ARM

Questions!?

23 © ARM 2017 ARM

ARM

The trademarks featured in this presentation are registered and/or unregistered trademarl
(or its subsidiaries) in the EU and/or elsewhere. All rights reserved. All other marks
trademarks of their respective owners.
Copyright © 2016 ARM Limited

© ARM 2017

	
	Background
	Pointer authentication
	ROP protection example
	
	Pointer authentication basics
	Pointer Authentication Codes
	Keys
	Pointers in AArch64
	Pointers in AArch64 (with authentication)
	Pointers in AArch64 (with authentication)
	Operations: sign
	Operations: authenticate
	Operations: strip
	
	ROP vulnerable code
	ROP protection
	ROP protection (backwards compatible)
	Other uses
	
	Linux Kernel
	Toolchain
	
	

