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Background

Memory protections are commonly deployed today
... largely prevents code injection

Focus has shifted to code reuse attacks
... e.g. ROP, JOP

Various mitigations today
... e.g. ASLR, execute-only memory, CFI, canaries, pointer mangling, shadow stacks
... not as widely deployed
... can be difficult to integrate
... can have non-trivial performance / code size impact
... can inhibit debugging
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Pointer authentication

Optional ARMv8.3-A extension

Detects illicit modification of pointers (and data structures)
... can be used to catch ROP, etc
... simple to integrate
... with minimal code size / performance impact

Backwards compatible subset
... binaries using some features can run on any ARMv8-A CPU (without protection)
... so distributions only need one set of binaries
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ROP protection example

paciasp
stp fp, lr, [sp, #-FRAME_SIZE]!
mov fp, sp

< function body >

ldp fp, lr, [sp], #FRAME_SIZE
autiasp
ret
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Theory
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Pointer authentication basics

New instructions to sign and authenticate pointers
... against a user-chosen (dynamic) context
... e.g. return address is valid for a given stackframe
... architecture provides mechanism, not policy

Uses a Pointer Authentication Code (PAC)
... authentication metadata stored within pointer
... so no additional space required
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Pointer Authentication Codes

Each PAC is derived from:
A pointer value
A 64-bit context value
A 128-bit secret key

PAC algorithm P can be:
QARMA1

IMPLEMENTATION DEFINED

Instructions hide the algorithm details

PACP

Pointer

Context

Key

1https://eprint.iacr.org/2016/444.pdf
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Keys

Secret 128-bit value
... inhibit prediction / forging of PACs

Held in system registers
... can be used, but not read/written at EL0 (userspace)
... limited risk of disclosure / modification
Several keys:

APIAKey, APIBKey (instruction pointers)
APDAKey, APDBKey (data pointers)
APGAKey (data)
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Pointers in AArch64

63 56 55 54 VA_SIZE VA_SIZE-1 0

address
reserved
low/high
tag/reserved
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Pointers in AArch64 (with authentication)

PAC embedded in reserved pointer bits
... e.g. 7 bits with 48-bit VA with tagging
... leaving remaining bits intact

PAC PAC
63 56 55 54 VA_SIZE VA_SIZE-1 0

address
reserved
low/high
tag
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Pointers in AArch64 (with authentication)

PAC embedded in reserved pointer bits
... e.g. 15 bits with 48-bit VA without tagging
... leaving remaining bits intact

PAC PAC
63 56 55 54 VA_SIZE VA_SIZE-1 0

address
reserved
low/high
reserved
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Operations: sign

PAC* instructions sign pointers with PACs

Result is not a usable pointer

PACP

Pointer

Context

Key

+ Pointer + PAC
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Operations: authenticate

AUT* instructions authenticate PACs

If PAC matches, result is the original pointer

If PAC doesn’t match, result is an invalid pointer → faults upon use

PACP

Pointer + PAC

Context

Key

=

Pointer

Invalid pointer

✓

x
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Operations: strip

XPAC* instructions strip PACs

Result is the original pointer

No authentication is performed

Pointer + PAC - Pointer
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Usage
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ROP vulnerable code

stp fp, lr, [sp, #-FRAME_SIZE]!
mov fp, sp

< function body >

ldp fp, lr, [sp], #FRAME_SIZE

ret lr
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ROP protection

pacia lr, sp
stp fp, lr, [sp, #-FRAME_SIZE]!
mov fp, sp

< function body >

ldp fp, lr, [sp], #FRAME_SIZE
autia lr, sp
ret lr
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ROP protection (backwards compatible)

paciasp
stp fp, lr, [sp, #-FRAME_SIZE]!
mov fp, sp

< function body >

ldp fp, lr, [sp], #FRAME_SIZE
autiasp
ret lr

18 © ARM 2017



Other uses

Many potential uses / contexts:
locally-scoped pointers / stackframe
PLTs / PLT address (dynamic link time)
opaque pointers / logical type, owner

Architecture provides mechanism, not policy
needs careful consideration of reuse attacks

Need to avoid signing gadgets
May require multiple keys for distinct purposes
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Software support
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Linux Kernel

RFCs23 posted

Enables userspace use
... per-process APIAKey initialized at exec() time
... context-switched by kernel
... retained across fork()

Ptrace interface to find PAC bits (but not keys)

Basic KVM support

No kernelspace pointer authentication (yet)

2https://lkml.kernel.org/r/1491232765-32501-1-git-send-email-mark.rutland@arm.com
3https://lkml.kernel.org/r/1500480092-28480-1-git-send-email-mark.rutland@arm.com
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Toolchain

Upstream GCC 7 supports -msign-return-address=[non-leaf | all]
... uses APIAKey, backwards-compatible instructions (by default)

GDB support pending kernel ptrace patches

Thanks to Jiong Wang, Yao Qi
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Questions?
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