
ARMv8.3 Pointer Authentication

Mark Rutland <mark.rutland@arm.com>

Linux Security Summit

September 14, 2017

© ARM 2017



Background

Memory protections are commonly deployed today
... largely prevents code injection

Focus has shifted to code reuse attacks
... e.g. ROP, JOP

Various mitigations today
... e.g. ASLR, execute-only memory, CFI, canaries, pointer mangling, shadow stacks
... not as widely deployed
... can be difficult to integrate
... can have non-trivial performance / code size impact
... can inhibit debugging

2 © ARM 2017



Pointer authentication

Optional ARMv8.3-A extension

Detects illicit modification of pointers (and data structures)
... can be used to catch ROP, etc
... simple to integrate
... with minimal code size / performance impact

Backwards compatible subset
... binaries using some features can run on any ARMv8-A CPU (without protection)
... so distributions only need one set of binaries

3 © ARM 2017



ROP protection example

paciasp
stp fp, lr, [sp, #-FRAME_SIZE]!
mov fp, sp

< function body >

ldp fp, lr, [sp], #FRAME_SIZE
autiasp
ret

4 © ARM 2017



Theory

5 © ARM 2017



Pointer authentication basics

New instructions to sign and authenticate pointers
... against a user-chosen (dynamic) context
... e.g. return address is valid for a given stackframe
... architecture provides mechanism, not policy

Uses a Pointer Authentication Code (PAC)
... authentication metadata stored within pointer
... so no additional space required

6 © ARM 2017



Pointer Authentication Codes

Each PAC is derived from:
A pointer value
A 64-bit context value
A 128-bit secret key

PAC algorithm P can be:
QARMA1

IMPLEMENTATION DEFINED

Instructions hide the algorithm details

PACP

Pointer

Context

Key

1https://eprint.iacr.org/2016/444.pdf

7 © ARM 2017



Keys

Secret 128-bit value
... inhibit prediction / forging of PACs

Held in system registers
... can be used, but not read/written at EL0 (userspace)
... limited risk of disclosure / modification
Several keys:

APIAKey, APIBKey (instruction pointers)
APDAKey, APDBKey (data pointers)
APGAKey (data)

8 © ARM 2017



Pointers in AArch64

63 56 55 54 VA_SIZE VA_SIZE-1 0

address
reserved
low/high
tag/reserved

9 © ARM 2017



Pointers in AArch64 (with authentication)

PAC embedded in reserved pointer bits
... e.g. 7 bits with 48-bit VA with tagging
... leaving remaining bits intact

PAC PAC
63 56 55 54 VA_SIZE VA_SIZE-1 0

address
reserved
low/high
tag

10 © ARM 2017



Pointers in AArch64 (with authentication)

PAC embedded in reserved pointer bits
... e.g. 15 bits with 48-bit VA without tagging
... leaving remaining bits intact

PAC PAC
63 56 55 54 VA_SIZE VA_SIZE-1 0

address
reserved
low/high
reserved

11 © ARM 2017



Operations: sign

PAC* instructions sign pointers with PACs

Result is not a usable pointer

PACP

Pointer

Context

Key

+ Pointer + PAC

12 © ARM 2017



Operations: authenticate

AUT* instructions authenticate PACs

If PAC matches, result is the original pointer

If PAC doesn’t match, result is an invalid pointer → faults upon use

PACP

Pointer + PAC

Context

Key

=

Pointer

Invalid pointer

✓

x

13 © ARM 2017



Operations: strip

XPAC* instructions strip PACs

Result is the original pointer

No authentication is performed

Pointer + PAC - Pointer

14 © ARM 2017



Usage

15 © ARM 2017



ROP vulnerable code

stp fp, lr, [sp, #-FRAME_SIZE]!
mov fp, sp

< function body >

ldp fp, lr, [sp], #FRAME_SIZE

ret lr

16 © ARM 2017



ROP protection

pacia lr, sp
stp fp, lr, [sp, #-FRAME_SIZE]!
mov fp, sp

< function body >

ldp fp, lr, [sp], #FRAME_SIZE
autia lr, sp
ret lr

17 © ARM 2017



ROP protection (backwards compatible)

paciasp
stp fp, lr, [sp, #-FRAME_SIZE]!
mov fp, sp

< function body >

ldp fp, lr, [sp], #FRAME_SIZE
autiasp
ret lr

18 © ARM 2017



Other uses

Many potential uses / contexts:
locally-scoped pointers / stackframe
PLTs / PLT address (dynamic link time)
opaque pointers / logical type, owner

Architecture provides mechanism, not policy
needs careful consideration of reuse attacks

Need to avoid signing gadgets
May require multiple keys for distinct purposes

19 © ARM 2017



Software support

20 © ARM 2017



Linux Kernel

RFCs23 posted

Enables userspace use
... per-process APIAKey initialized at exec() time
... context-switched by kernel
... retained across fork()

Ptrace interface to find PAC bits (but not keys)

Basic KVM support

No kernelspace pointer authentication (yet)

2https://lkml.kernel.org/r/1491232765-32501-1-git-send-email-mark.rutland@arm.com
3https://lkml.kernel.org/r/1500480092-28480-1-git-send-email-mark.rutland@arm.com

21 © ARM 2017



Toolchain

Upstream GCC 7 supports -msign-return-address=[non-leaf | all]
... uses APIAKey, backwards-compatible instructions (by default)

GDB support pending kernel ptrace patches

Thanks to Jiong Wang, Yao Qi

22 © ARM 2017



Questions?

23 © ARM 2017



The trademarks featured in this presentation are registered and/or unregistered trademarks of ARM limited

(or its subsidiaries) in the EU and/or elsewhere. All rights reserved. All other marks featured may be

trademarks of their respective owners.

Copyright © 2016 ARM Limited

© ARM 2017


	
	Background
	Pointer authentication
	ROP protection example
	
	Pointer authentication basics
	Pointer Authentication Codes
	Keys
	Pointers in AArch64
	Pointers in AArch64 (with authentication)
	Pointers in AArch64 (with authentication)
	Operations: sign
	Operations: authenticate
	Operations: strip
	
	ROP vulnerable code
	ROP protection
	ROP protection (backwards compatible)
	Other uses
	
	Linux Kernel
	Toolchain
	
	

