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Background

= Memory protections are commonly deployed today
... largely prevents code injection

= Focus has shifted to code reuse attacks
.. e.g. ROP, JOP

= Various mitigations today
.. e.g. ASLR, execute-only memory, CFl, canaries, pointer mangling, shadow stacks
.. not as widely deployed
.. can be difficult to integrate
.. can have non-trivial performance / code size impact

.. can inhibit debugging

2 © ARM 2017 ARM



Pointer authentication

= Optional ARMv8.3-A extension

= Detects illicit modification of pointers (and data structures)
... can be used to catch ROP, etc
... simple to integrate
... with minimal code size / performance impact

= Backwards compatible subset
... binaries using some features can run on any ARMv8-A CPU (without protection)
.. so distributions only need one set of binaries
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ROP protection example
pacliasp

stp fp, 1lr, [sp, #-FRAME SIZE]!
mov fp, sp

< function body >

ldp fp, lr, [sp], #FRAME SIZE

autiasp
ret
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Theory
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Pointer authentication basics

= New instructions to sign and authenticate pointers
... against a user-chosen (dynamic) context
... €.g. return address is valid for a given stackframe
... architecture provides mechanism, not policy

= Uses a Pointer Authentication Code (PAC)
... authentication metadata stored within pointer
.. so no additional space required
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Pointer Authentication Codes

= Each PAC is derived from:

= A pointer value
= A 64-bit context value
= A 128-bit secret key
= PAC algorithm P can be:
* QARMA'
= IMPLEMENTATION DEFINED

= Instructions hide the algorithm details

'https://eprint.iacr.org/20 1 6/444.pdf
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Keys

= Secret 128-bit value
.. inhibit prediction / forging of PACs
* Held in system registers
... can be used, but not read/written at ELO (userspace)

... limited risk of disclosure / modification
= Several keys:

= APIAKey, APIBKey (instruction pointers)
= APDAKey, APDBKey (data pointers)
= APGAKey (data)
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Pointers in AArché4
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Pointers in AArché4 (with authentication)

= PAC embedded in reserved pointer bits
... e.g. 7 bits with 48-bit VA with tagging

... leaving remaining bits intact
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Pointers in AArché4 (with authentication)

= PAC embedded in reserved pointer bits
... e.g. 15 bits with 48-bit VA without tagging
... leaving remaining bits intact
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Operations: sign

= PAC* instructions sign pointers with PACs

* Result is not a usable pointer

Pointer )
Context PAC ]—b@—b[ Pointer + PAC ]

[ Key

Y

Vo
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Operations: authenticate

= AUT* instructions authenticate PACs
= If PAC matches, result is the original pointer

= If PAC doesn’t match, result is an invalid pointer — faults upon use

[ Pointer + PAC ] } \;—P[ Pointer ]

[ Context PAC

X
[ Key L>[Ir1valid pointer]
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Operations: strip

= XPAC* instructions strip PACs
= Result is the original pointer

= No authentication is performed

[ Pointer + PAC ]—P@—P[ Pointer
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Usage
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ROP vulnerable code

stp fp, lr, [sp, #-FRAME SIZE]!
mov fp, sp

< function body >

ldp fp, 1lr, [spl, #FRAME SIZE
ret 1lr
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ROP protection
pacia lr, sp

stp fp, lr, [sp, #-FRAME SIZE]!
mov fp, sp

< function body >

ldp fp, 1lr, [spl, #FRAME SIZE
autia 1lr, sp
ret 1r
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ROP protection (backwards compatible)
pacilasp

stp fp, lr, [sp, #-FRAME SIZE]!
mov fp, sp

< function body >

ldp fp, 1lr, [spl, #FRAME SIZE

autiasp
ret 1lr
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Other uses

= Many potential uses / contexts:

* locally-scoped pointers / stackframe

= PLTs/PLT address (dynamic link time)

= opaque pointers / logical type, owner
= Architecture provides mechanism, not policy
= needs careful consideration of reuse attacks
= Need to avoid signing gadgets

= May require multiple keys for distinct purposes
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Software support
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Linux Kernel

= RFCs? posted

= Enables userspace use
... per-process APTAKey initialized at exec() time
... context-switched by kernel
. retained across fork()

= Ptrace interface to find PAC bits (but not keys)
= Basic KVM support

* No kernelspace pointer authentication (yet)

Zhteps://lkml.kernel.org/r/ 1 491232765-32501 - | -git-send-email-mark.rutland@arm.com
3https://lkml.kernel.org/r/ | 500480092-28480- | -git-send-email-mark.rutland@arm.com
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Toolchain

= Upstream GCC 7 supports -msign-return-address=[non-leaf | all]
.. uses APIAKey, backwards-compatible instructions (by default)

= GDB support pending kernel ptrace patches
= Thanks to Jiong Wang, Yao Qi
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Questions!?
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