

Dynamically Hacking the Kernel
with Containers

ContainerCon Japan 2016
Tokyo

Quey-Liang Kao
National Tsing Hua University, Taiwan

About Myself
● Research topics

– HPC (numerical), Heterogeneous computing
– High-end hardware virtulization (InfiniBand, GPGPU)
– Container technology

● Contributions
– AUR packager and maintainer

● runc-git, openscap
● kpatch

Outline
● Motivation
● Background
● Demo: kernel detouring

– FreeBSD on Linux
● Other approaches
● Conclusion

Motivation

Higher
Performance

Lower
Isolation

VM

Container

http://typemoon.wikia.com/wiki/Holy_Grail

Quick Survey

Terms
● OS container

– Like a VM
– No layered FS
– LXC, OpenVZ, BSD

Jails, Solaris zones

● App container
– For single service
– layered FS
– Docker, Rocket

https://blog.risingstack.com/operating-system-containers-vs-application-containers/

There Dimensions
● System software

– OS container's perspective
● Orchestration

– App container's perspective
● Applications

Application

System Orchestration

DevOps

Security

NS, Cgroups Kubernetes
Docker Swarm

CoreOS

Application

System Orchestration

How do I Orchestrate
My Container?

By Isabel Jimenez

Application

System Orchestration

Containers at scale
thanks to Kubernetes

By Brandon Philips

Application

System Orchestration

A Security State of
Mind: Container
Security in the

Enterprise
By Chris Van Tuin

Application

System Orchestration

How the hell do I
run my containers

in production,
and will it scale?
By Daniël van Gils

Application

System Orchestration

Container Hacks &
Fun Images

By Jessie Frazelle

Application

System Orchestration

Rootless Container
with Runc

By Aleksa Sarai

Application

System Orchestration

Soft Container
Towards 100%

Resource Utilization
By Accela Zhao

Application

System Orchestration

Unprivileged Containers:
What you Always Wanted

to Know About Name-
spaces But Were Too

Afraid To Ask
By James Bottomley

Application

System Orchestration

etc...

This work
should be here

Background

Modules,
Live patches,

and Kerenl detouring

Kernel Module: Loading

Kernel

some_ext.ko

Kernel Space

User Space

Process:

insmod test.ko

syscall: init_module

Kernel Module: Using

Kernel some_ext.ko

Kernel Space

User Space

Process:

cat /dev/some_cdev

syscall: read

Live Patching: Building

Kernel

patch-fix.ko

Kernel Space

User Space

Process:

build fix.patch

syscall: init_module

File:
fix.patch

Current
kernel source

Bug()

Live Patching: Applying

Kernel

fix.ko

Kernel Space

User Space

Process:

insmod fix.ko

syscall: init_module

Bug()

Live Patching: Applying

Kernel fix.ko

Kernel Space

User Space

Bug() Bug-fixed()

ftrace

Kernel Detouring

Kernel detour.ko
(namespace-aware)

Kernel Space

User Space

Normal Process Container

func() func()

Demo: Kernel Detouring

http://kirokueiga.seesaa.net/archives/201208-1.html

FreeBSD binary on Linux

01000110011100100110010101100101010000100101001101000100

Specific Challenges (FreeBSD)
● Corresponding system calls

– Flag numbers are not portable
– different calling/exiting conventions

● Unique system calls
– Re-implementation

General Challenges
● Insufficient isolation
● Limitation of development

– live patching should only be a temp. solution

Other Binary Compatibility Work
● Wine

– Special loader for PEs/DLLs
● FreeBSD, Windows 10

– Kernel built-in compatibility layer for Linux binary
– System call remapping/re-implementation

Possible Applications
● Experimental module/patch test bed
● Images for other OSes
● Educational purpose

– why not?

Other approaches
● Hyper-V
● Multi-Kernel
● Unikernel

Microsoft Hyper-V
● A private kernel per container

– stripped kernel reduced from Windows server
● Unix-likes support

– as VMs (in a VM-like container) (container-like
VM)

Multi-Kernel
● Barrelfish

– Philosophy: separation and duplication rather than
keep syncing

– One kernel per core
– Scalability and heterogeneity

● VirtuOS, Arrakis, Quest-V, etc.
– Performance improvement

UniKernel
● Rump Kernel, MirageOS, OSv, etc.

– Application oriented
● no more general-purpose

– “Compiler” approach

http://www.penninkhof.com/2015/05/minimalist-cassandra-vm-using-osv/

Higher
Performance

Lower
Isolation

VM

Container

http://typemoon.wikia.com/wiki/Holy_Grail

Hyper-V

Kernel detouring
(or some kernel-space ext.)

New paradigms
(Multi-kernel, Unikernels)

Conclusion
● The kernel detouring demo attempts to

indicate a possible movement of the
development of OS containers
– as a proof-of-concept

● Future direction
– Make more fun
– Make it more complete

Q & A

	Slide 1
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11
	Slide 12
	Slide 13
	Slide 14
	Slide 15
	Slide 16
	Slide 17
	Slide 18
	Slide 19
	Slide 20
	Slide 21
	Slide 22
	Slide 23
	Slide 24
	Slide 25
	Slide 26
	Slide 27
	Slide 28
	Slide 29
	Slide 30
	Slide 31
	Slide 32
	Slide 33
	Slide 34
	Slide 35
	Slide 36
	Slide 37
	Slide 38
	Slide 39
	Slide 40

