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About Myself
● Research topics

– HPC (numerical), Heterogeneous computing
– High-end hardware virtulization (InfiniBand, GPGPU)
– Container technology

● Contributions
– AUR packager and maintainer

● runc-git, openscap
● kpatch



  

Outline
● Motivation
● Background
● Demo: kernel detouring

– FreeBSD on Linux
● Other approaches
● Conclusion 
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Quick Survey



  

Terms
● OS container

– Like a VM
– No layered FS
– LXC, OpenVZ, BSD 

Jails, Solaris zones

● App container
– For single service
– layered FS
– Docker, Rocket

https://blog.risingstack.com/operating-system-containers-vs-application-containers/



  

There Dimensions
● System software 

– OS container's perspective
● Orchestration

– App container's perspective
● Applications



  

Application

System Orchestration

DevOps

Security

NS, Cgroups Kubernetes
Docker Swarm

CoreOS



  

Application

System Orchestration

How do I Orchestrate
My Container?

By Isabel Jimenez



  

Application

System Orchestration

Containers at scale
thanks to Kubernetes

By Brandon Philips



  

Application

System Orchestration

A Security State of
Mind: Container
Security in the

Enterprise
By Chris Van Tuin



  

Application

System Orchestration

How the hell do I
run my containers

in production,
and will it scale?
By Daniël van Gils



  

Application

System Orchestration

Container Hacks &
Fun Images

By Jessie Frazelle



  

Application

System Orchestration

Rootless Container
with Runc

By Aleksa Sarai



  

Application

System Orchestration

Soft Container
Towards 100% 

Resource Utilization
By Accela Zhao



  

Application

System Orchestration

Unprivileged Containers: 
What you Always Wanted

to Know About Name-
spaces But Were Too 

Afraid To Ask
By James Bottomley



  

Application

System Orchestration

etc...

This work
should be here



  

Background

Modules,
Live patches,

and Kerenl detouring



  

Kernel Module: Loading

Kernel

some_ext.ko

Kernel Space

User Space

Process:

insmod test.ko

syscall: init_module



  

Kernel Module: Using

Kernel some_ext.ko

Kernel Space

User Space

Process:

cat /dev/some_cdev

syscall: read



  

Live Patching: Building

Kernel

patch-fix.ko

Kernel Space

User Space

Process:

build fix.patch

syscall: init_module

File:
fix.patch

Current 
kernel source

Bug()



  

Live Patching: Applying

Kernel

fix.ko

Kernel Space

User Space

Process:

insmod fix.ko

syscall: init_module

Bug()



  

Live Patching: Applying

Kernel fix.ko

Kernel Space

User Space

Bug() Bug-fixed()

ftrace



  

Kernel Detouring

Kernel detour.ko
(namespace-aware)

Kernel Space

User Space

Normal Process Container

func() func()



  

Demo: Kernel Detouring

http://kirokueiga.seesaa.net/archives/201208-1.html



  

FreeBSD binary on Linux

01000110011100100110010101100101010000100101001101000100



  

Specific Challenges ( FreeBSD )
● Corresponding system calls

– Flag numbers are not portable
– different calling/exiting conventions

● Unique system calls
– Re-implementation



  

General Challenges
● Insufficient isolation
● Limitation of development 

– live patching should only be a temp. solution



  

Other Binary Compatibility Work
● Wine

– Special loader for PEs/DLLs
● FreeBSD, Windows 10

– Kernel built-in compatibility layer for Linux binary
– System call remapping/re-implementation



  

Possible Applications
● Experimental module/patch test bed
● Images for other OSes
● Educational purpose

– why not?



  

Other approaches
● Hyper-V
● Multi-Kernel
● Unikernel



  

Microsoft Hyper-V
● A private kernel per container

– stripped kernel reduced from Windows server
● Unix-likes support

– as VMs ( in a VM-like container ) ( container-like 
VM )



  

Multi-Kernel
● Barrelfish

– Philosophy: separation and duplication rather than 
keep syncing

– One kernel per core
– Scalability and heterogeneity

● VirtuOS, Arrakis, Quest-V, etc.
– Performance improvement



  



  

UniKernel
● Rump Kernel, MirageOS, OSv, etc.

– Application oriented
● no more general-purpose

– “Compiler” approach



  
http://www.penninkhof.com/2015/05/minimalist-cassandra-vm-using-osv/
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http://typemoon.wikia.com/wiki/Holy_Grail

Hyper-V

Kernel detouring
( or some kernel-space ext. )

New paradigms
( Multi-kernel, Unikernels )



  

Conclusion
● The kernel detouring demo attempts to 

indicate a possible movement of the 
development of OS containers
– as a proof-of-concept

● Future direction
– Make more fun
– Make it more complete



  

Q & A
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