
© Hitachi, Ltd. 2014. All rights reserved.

Hitachi, Ltd. Yokohama Research Lab
Linux Technology Center

2014/05/20

Yoshihiro Hayashi
yoshihiro.hayashi.cd@hitachi.com

Evaluation of uClinux and PREEMPT_RT
for Machine Control System

© Hitachi, Ltd. 2014. All rights reserved.

Agenda

1

1. Background

2. Experience from appling

both PREEMPT_RT and uClinux

3. Evaluation of PREEMPT_RT and uClinux

and Environment

4. Conclusion

© Hitachi, Ltd. 2014. All rights reserved.

1. Background

2

© Hitachi, Ltd. 2014. All rights reserved.

What is a Machine Control System?

3

A Realtime System reads and writes data at
microsecond to millisecond intervals, to control
physical machines

Example: A brake system in a car

A microcontroller polls
the sensor value to detect
how strong the pedal
is pushed and sends the
information over the network

Another microcontroller
receives the information
and applies the brake

Connected by network

© Hitachi, Ltd. 2014. All rights reserved.

Problem without Realtimeness

4

Example: A brake system in a car

If the microcontroller detects
a push of pedal with some delay
because of other programs,
sending the information is
also delayed.

Detection of the sensor value
and applying brake is also
delayed.

Connected by network

It takes longer to apply brake
after the brake pedal is
pushed.

Braking
Distance
Gets Longer

Danger

© Hitachi, Ltd. 2014. All rights reserved.

Issues of Machine Control System Development

5

Current Machine Control Systems Development

With Linux

 Lots of application developers for Linux
 Linux know-how is easier to acquire
 Multiple middleware and network stacks are included in Linux

The Issues are solved

Applying Linux to Machine Control Systems
still has other issues

 Use of different OSes for different products, or even no OS
 VxWorks, FreeRTOS,μITRON, μT-Kernel etc.

 Issues
 Small number of application developers for each OS
 Difficult to acquire solid know-how
 No middleware or network stack (or proprietary if available)

Issues: Too large variety of environments for development
Linux can be used as the single unified environment

© Hitachi, Ltd. 2014. All rights reserved.

Issues of applying Linux to Embedded Systems

6

Lack of realtimeness, and disk and memory usage
are the issues.

Issues Lack of realtimeness

A mechanism to respond
faster to the external inputs
（PREEMPT_RT）

Solutions

Linux is good at batch loads that process large amount of data.
Linux is originally for PCs. PCs have faster CPUs and
larger memory and disks, compared to Machine Control Systems.

Memory and disk
usage

Linux for small
controllers (uClinux)

A mechanism to place
code and data used in IRQ
in SRAM

© Hitachi, Ltd. 2014. All rights reserved.

PREEMPT_RT

• Huge patchset

– Making in-kernel locking-primitives (using

spinlocks) preemptible through reimplementation

with rtmutexes.

– Implementing priority inheritance for in-kernel

spinlocks and semaphores.

– Converting interrupt handlers into preemptible

kernel threads.

7

© Hitachi, Ltd. 2014. All rights reserved.

uClinux

• Huge patchset / distoribution

– “Mu” stands for “micro”, and “C” is for “controller”.

– Name of the patchset suitable for NO MMU micro

controllers.

– Name of the distribution which includes a

userland library and basic commands.

8

© Hitachi, Ltd. 2014. All rights reserved.

CPU Category

9

1GHz

500MHz

100MHz

10us 100us 1ms 100ms 1s 10ms

(A)Low-End Controller: ARM Cortex-M

RT
Response

Times

CPU
Frequency

(C)Application Processor: intel x86 / ARM Cortex-A

(B)Mid-Range Controller: ARM Cortex-R

© Hitachi, Ltd. 2014. All rights reserved.

CPU Category and Coverage of Linux

10

1GHz

500MHz

100MHz

10us 100us 1ms 100ms 1s 10ms

(A)Low-End Controller: ARM Cortex-M

RT
Response

Time

CPU
Frequency

Linux Linux with PREEMPT_RT

(B)Mid-Range Controller: ARM Cortex-R

VxWorks FreeRTOS
TRON T-kernel

Apply
PREEMPT_RT

Patch

uClinux

Apply
uClinux
Patch

(C)Application Processor: intel x86 / ARM Cortex-A

© Hitachi, Ltd. 2014. All rights reserved.

My Challenge

11

1GHz

500MHz

100MHz

10us 100us 1ms 100ms 1s 10ms

(A)Low-End Controller: ARM Cortex-M

RT
Response

Time

CPU
Frequency

Linux Linux with PREEMPT_RT

(B)Mid-Range Controller: ARM Cortex-R

uClinux
with PREEMPT_RT ?

uClinux

(C)Application Processor: intel x86 / ARM Cortex-A

Apply
PREEMPT_RT

Patch
Apply

uClinux
Patch

Apply
PREEMPT_RT

Patch

© Hitachi, Ltd. 2014. All rights reserved.

2. Experience from applying
 both PREEMPT_RT and uClinux

12

0. My evaluation environment

1. Lack of drivers for peripherals

2. Difficulty of applying multiple huge patchsets

3. Unsuitability of in-kernel debugging tools

© Hitachi, Ltd. 2014. All rights reserved.

My evaluation environment

• Linux STM3240G-EVAL Kit made by EMCRAFT

• uClinux and BSP(Board Support Package) are available

based on 2.6.33
13

SoC: STM32F407IG
 CPU: ARM Cortex-M4 168MHz
 SRAM: 192KB

Memory: PSRAM 16MB × 2
Used as main memory

Storage: NOR FLASH 8MB
Bootimage is stored here

STMicroelectronics
STM3240G-EVAL Board

STM-MEM
plug-in board

© Hitachi, Ltd. 2014. All rights reserved.

Lack of drivers for peripherals

• In general…

– BSPs(board support packages) are developed out of tree;

have just a small amount of users; are not mature.

– Users should evaluate if its functions and quality are

satisfactory before working on it.

• In my evaluation…

– hrtimer is necessary for realtime application but not

available on evaluation environment

• “STM32 System Timer” in SoC is used as clockevent.

However, “oneshot mode” was not implemented.

• “oneshot mode” is necessary for hrtimer.

• I implemented “oneshot mode” and made hrtimer

available.

 14

© Hitachi, Ltd. 2014. All rights reserved.

Difficulty of applying multiple huge patchset

• In general…

– Each patchset can be applied onto a certain version of

vanilla kernel.

– Patchsets are not designed to be used with other

patchsets.

• In my evalutation…

– I applied PREEMPT_RT patch on BSP which included

uClinux then many hunks were rejected.

– I applied rejected hunks manually.

– I hope that at least one patchset will be upstreamed.

• and the other one will be compatible with the

upstreamed one.

15

© Hitachi, Ltd. 2014. All rights reserved.

Unsuitability of in-kernel debugging tools

• In general…

– Many in-kernel debug tools are unsuitable for

uClinux running in Cortex-M

• In-kernel debug tools are too heavy for Cortex-M

• Some of the tools depend on architecture specific

functions

• In my evaluation…

– ftrace was too heavy.

– IRQ tracer did not seem to work.

– I had to “reinvent” necessary debugging tools.

• I implemented a simple tracer which stores traces

in SRAM.
16

© Hitachi, Ltd. 2014. All rights reserved.

Evaluation of PREEMPT_RT, uClinux and environment

17

• Evaluation1: Cyclictest

• Evaluation2: Memory Access

© Hitachi, Ltd. 2014. All rights reserved.

Cyclictest

• For realtime applications, latency of timer IRQ

response is very important

– Realtime applications use timer to implement periodical

procedures.

18

kernel cyclictest

IRQ Handler

Process Scheduler

Process Switch

Raise
Timer IRQ
at time X

Wake Up at time Y

Setup Timer
to fire at time X

Measuring Period
= Y - X

© Hitachi, Ltd. 2014. All rights reserved.

Result of Cyclictest (1/3)

19

Average
440us 1024us

times

us

© Hitachi, Ltd. 2014. All rights reserved.

Result of Cyclictest (2/3)

20

Max Latency

15090us 1808us

times

us

© Hitachi, Ltd. 2014. All rights reserved.

Result of Cyclictest (3/3)

• Max latency is very important for realtime systems

because developers have to define deadlines for

periodical procedures.

• uClinux is better in worst case with PREEMPT_RT

than without it.

21

uClinux uClinux with

PREEMPT_RT

Average 440us 1024us

Worst case 15090us 1808us

© Hitachi, Ltd. 2014. All rights reserved.

Memory Access PSRAM vs SRAM

• In my evaluation environment, uClinux run in

PSRAM on the plug-in board.

• The SoC has just 192kb SRAM. This is too small to

run uClinux.

• PSRAM on plug-in board is far slower than SRAM

in SoC.

• If code and data used in IRQ context are placed in

SRAM, IRQ latency will be lower.

22

© Hitachi, Ltd. 2014. All rights reserved.

Result of Memory Access PSRAM vs SRAM

• Evaluated how much faster is SRAM than PSRAM in my

environment.

– Used own micro benchmark, which just dose 10M integer

additions in-memory.

– If all the code and data of the IRQ context are placed in

SRAM, timer IRQ latency will be probably 20 times lower.

– Then max latency will be 90us instead of 1808us.

23

Code is

stored in

Data is

stored in

Time

(Shorter is better)

Case 1 PSRAM PSRAM 12047511 us

Case 2 PSRAM SRAM 10430945 us

Case 3 SRAM PSRAM 2396412 us

Case 4 SRAM SRAM 651154 us

about
20 times
faster

© Hitachi, Ltd. 2014. All rights reserved.

Conclusion

24

© Hitachi, Ltd. 2014. All rights reserved.

Coverage of Linux after my Challenge

25

1GHz

500MHz

100MHz

10us 100us 1ms 100ms 1s 10ms

(A)Low-End Controller: ARM Cortex-M

RT
Response

Time

CPU
Frequency

Linux Linux with PREEMPT_RT

(C)Application Processor: intel x86 / ARM Cortex-A

(B)Mid-Range Controller:

VxWorks FreeRTOS
TRON T-kernel

uClinux
uClinux
With

PREEMPT_RT

© Hitachi, Ltd. 2014. All rights reserved.

Conclusion

• uClinux’s IRQ latency is shorter with PREEMPT_RT

– Cyclictest showed that max latency was 1808us

– Combination of uClinux and PREEMP_RT is useful for

developing Machine Control Systems.

– Max latency could be 90us if we would use SRAM for

code and data of IRQ context.

• It’s very tough to apply both uClinux and

PREEMPT_RT.

– In-kernel debugging tools are too heavy for Cortex-M.

– Upstreaming is important for ease of use.

26

© Hitachi, Ltd. 2014. All rights reserved.

appendix

27

© Hitachi, Ltd. 2014. All rights reserved.

Microbenchmark

int readfunc(void *addr, int length, int loop){

 int ret = 0;

 void *i;

 void *end;

 end = addr + length;

 while(loop-- > 0){

 for(i=addr; i<end; i++){

 ret += *(char*)i;

 }

 }

 return ret;

}

28

