

Security Evaluation of NTP

Matthew Van Gundy <mvangund@cisco.com>

Technical Leader, Cisco Advanced Security Initiatives Group (ASIG)

Linux Collaboration Summit 2016

Who Are We?

Cisco ASIG:

- ~70 Hardware & Software Security Specialists
- Dedicated to securing Cisco, customers, and the Internet
- Eval Team: Jonathan Gardner, Stephen Gray, Matt Street

Cisco Talos VulnDev:

- Develop and employ automated tooling to discover open-source software vulnerabilities at scale
- Eval Team: Yves Younan, Aleksandar Nikolic

Boston University:

- · Aanchal Malhotra, PhD Student
- · Sharon Goldberg, Associate Professor

Why Evaluate NTP?

- Accurate time keeping is critical to the safe operation of many Internet systems
- NTP runs everywhere: routers, switches, servers, laptops
- All software has flaws
 - A number of serious CVEs disclosed in 2014-2015
 - Previous evaluators stated additional concerns
- Cisco proactively assesses security of our products and services
- In support of Linux Foundation Core Infrastructure Initiative (CII)

Image credits: George Boukeas, original Gorilla icon theme artwork by Jakub Steiner (CC BY-SA 3.0), via Wikimedia Commons

Slide Credit: Sharon Goldberg & Aanchal Malhotra

Approach and High-Level Attack Goals

- Talos VulnDev
 - Target: ntp 4.2.8p2
 - Memory corruption
 - Injection
 - Fuzzing and Static Analysis
- ASIG & Boston University
 - Targets: ntp 4.2.8p3-p6,
 NTPsec @{2015-08-19}-0.9.0
 - Protocol vulnerabilities
 - Application logic vulnerabilities

Goal	Status
Change Time	
Denial of Service	
OS-level Privilege Escalation	

NTP's Security Mechanisms

© 2015 Cisco and/or its affiliates. All rights reserved.

Preventing On-Path Attacks

- Crypto prevents on-path attacks
- Rarely used in practice
- Symmetric crypto
 - digest = MD5(key || message)
 - Difficult to manage: manual key distribution
- Asymmetric crypto (Autokey)
 - Autokey Protocol (RFC 5906) is not a standards-track document
 - Autokey is known to be broken (S. Röttger 2012)
- "... if you are using autokey you should stop using it." -- Harlan Stenn, NTP Maintainer, 2015

© 2015 Cisco and/or its affiliates. All rights reserved.

Cisco Public

R

server

Response

Preventing Off-Path **Attacks**

NTP Packet					
LI	Ver	Mode	Stratum (8)	Poll (8)	Precision (8)
	Root delay (32)				
Root dispersion (32)					
Reference Clock Id (32)					
Reference Clock Timestamp (64)					
T1: Origin Timestamp (64)					
T2: Receive stamp (64)					
T3: Transmit Timestamp (64)					
Keyid (32, optional)					
Digest (128+, optional)					
ahal	li.				

CISCO

- No source port randomization
- TEST2: Drop packet unless T3 in query == T1 in response
- Transmit timestamp has ≈ 32-bits entropy
- Similar to TCP sequence number randomization

© 2015 Cisco and/or its affiliates. All rights reserved

Cisco Public

Bypassing Origin Validation

Spoofing Messages from Peers

- Origin timestamp serves as a nonce to prevent spoofing
- Control protocols disclose expected origin timestamp to unauthenticated clients (CVE-2015-8139)

```
ntpdc> showpeer 192.168.33.10
remote 192.168.33.10, local 192.168.33.11
                    d9c79a0e.1ef70a98 Tue, Oct 13 2015 14:56:14.120
reference time:
originate timestamp: d9c79a63.b05e631b Tue, Oct 13 2015 14:57:39.688
receive timestamp:
                   d9c79a20.b9d5ee3d Tue, Oct 13 2015 14:56:32.725
transmit timestamp: d9c79a20.b9d5ee3d Tue, Oct 13 2015 14:56:32.725
```

© 2015 Cisco and/or its affiliates. All rights reserved.

Most systems limit ntpq/ntpdc to localhost

Spoofing Messages from Peers:

Origin (CVE-2015-8138)

RFC 5905 (NTP v4) States:
 To protect against replay of the last transmitted packet, the xmt state variable is set to zero immediately after a successful bogus check.

- ntpd advertises time source in reference clock id field
- ntpd accepts more than one message per poll period

cisco

Demo: Changing Time Using Origin (CVE-2015-8138)

© 2015 Cisco and/or its affiliates. All rights reserved

Recommendations for Origin Leak (CVE-2015-8139)

- Improve scrutiny of non-standard extensions
- Prevent access to control protocols

```
ntp.conf:
   disable mode7
   restrict default noquery ...
```

Only allow authorized access

```
iptables -A OUTPUT -o lo -p udp -m udp --dport 123 \
   -m owner --uid-owner root -j ACCEPT
iptables -A OUTPUT -o lo -p udp -m udp --dport 123 \
   -j DROP
```

cisco

Recommendations for Origin (CVE-2015-8138)

- Limit number of messages accepted per poll period
- Improved peer review?
- Improved modularity and automated testing
- Clients: Block incoming packets except from configured peers

© 2015 Cisco and/or its affiliates. All rights reserved.

- ntp.conf: restrict default noserve ...
- Host-based firewall
- Enable and enforce authentication (if feasible) restrict default notrust ... trustedkey 1 enable auth server ntp.localdomain key 1

adrada CISCO

PANIC: Preventing large time shifts

• RFC 5905 (NTP v4):

CISCO

- PANIC means the offset is greater than the panic threshold PANICT (1000 s) and SHOULD cause the program to exit with a diagnostic message to the system log.
- Many systems invoke ntpd with the -g flag
 This option allows the time to be set to any value without restriction; however, this can happen only once.
- Process supervisors restart failed daemons
- Sometimes ntpd will STEP more than once (Malhotra et al. CVE-2015-5300)

Going Back to 1985

allialia CISCO

Cisco Public

Authentication

© 2015 Cisco and/or its affiliates. All rights reserved.

A Typical Authenticated NTP Environment

server stratum1 key 1

server stratum2 key 2

Keys:

1: secret

2:

Keys:

1: secret

2: othersecret

Keys:

1:

2: othersecret

Symmetric Authentication

- digest = MD5(key || message)
- Vulnerable to length extension (Only affects autokey and proprietary extensions)
- Difficult to manage
- Standards do not define semantics
- Reject packet if MD5(keys[pkt.keyid] || pkt.msg) != pkt.digest

Recommendations for Skeleton Key (CVE-2015-7974, CVE-2016-1567)

- Improved peer review?
- Standardize clear and precise definition of NTP authentication

© 2015 Cisco and/or its affiliates. All rights reserved.

Upgrade to ntp 4.2.8p6 or above

Ephemeral Associations

© 2015 Cisco and/or its affiliates. All rights reserved.

Ephemeral Associations

• RFC 5905 (NTP v4): Ephemeral associations are mobilized upon the arrival of a packet and are demobilized upon error or timeout

© 2015 Cisco and/or its affiliates. All rights reserved.

- Supported for symmetric, broadcast, and manycast modes
- · Packets mobilizing new ephemeral associations must be authenticated (by default)

Crypto-NAK Packets

- Authentication errors elicit a crypto-NAK response
- Not authenticated
- crypto-NAK packets are handled "late", during other packet consistency checks
- Authentication states: { NONE, OK, ERROR, CRYPTO }

NTP Crypto-NAK Packet					
LI	Ver	Mode	Stratum (8)	Poll (8)	Precision (8)
	Root delay (32)				
	Root dispersion (32)				
	Reference Clock Id (32)				
	Reference Clock Timestamp (64)				
	T1: Origin Timestamp (64)				
	T2: Receive Timestamp (64)				
	T3: Transmit Timestamp (64)				
	Keyid (32, optional) == $0x00000000$				
	Digest (128+, optional)				

NAK to the Future Vulnerability (CVE-2015-7871)

- Most ephemeral associations
 - auth == OK: mobilize
 - auth == NONE: mobilize only if auth not required
 - else: reject
- Symmetric active mode packets
 - auth == OK: mobilize
 - auth in {NONE, ERROR}: Special handling for certain broken clients
 - auth == CRYPTO: crypto-NAK packets mobilize new symmetric associations
- keyid == 0: Unauthenticated association

adrada CISCO

Recommendations for NAK to the Future (CVE-2015-7871)

- Introduced through refactoring in 4.2.5p186
- Use language / compiler features
 enums and switch + gcc -Wswitch
- Clients: Block incoming packets except from configured peers
- Block crypto-NAK packets using deep packet inspection
- Drop NTP packets unless the level 3 payload length is one of
 - 48 bytes (unauthenticated)
 - 68 bytes (symmetric MD5)
 - 72 bytes (symmetric SHA1)

Other Vulnerabilities

Other Vulnerabilities

- Déjà vu: Broadcast traffic can be replayed by on-path attackers (CVE-2015-7973)¹
- Unauthenticated off-path DoS against preemptable modes (CVE-2015-7979)¹
- Buffer overflow via refclock (CVE-2015-7853)

1. Malhotra & Goldberg. "Attacking NTP's Authenticated Broadcast Mode." ACM SIGCOMM Computer Communication Review, April 2016.

© 2015 Cisco and/or its affiliates. All rights reserved.

Server-side (ntpd) Control Mode **Vulnerabilities**

Unauthenticated

- Control messages can be replayed (CVE-2015-8140)
- DoS via ntpq reslist command (CVE-2015-7977, CVE-2015-7978)

© 2015 Cisco and/or its affiliates. All rights reserved.

Authenticated

- 1 use-after free (CVE-2015-7849)
- 2 denial-of-service (CVE-2015-7848, CVE-2015-7850)
- 1 directory traversal on VMS (CVE-2015-7851)
- 1 creation of file with unsafe path (CVE-2015-7976)

Client-side (ntpq/ntpdc) Control Mode Vulnerabilities

Unauthenticated

1 server-exploitable infinite loop DoS (CVE-2015-8158)

Authenticated

- 2 local buffer overflows (CVE-2015-7854, CVE-2015-7975)
- 1 off-by-one memory corruption (CVE-2015-7852)

Recommendations:

Limit access to control protocols

Vulnerability Summary

Impact	Unauthenticated	Authenticated	Total
Time-Shifting	5	1	6
Server Escalation	0	4	4
Client Escalation	1	1	2
Server DoS	2	2	4
Client DoS	3	0	3
To Be Disclosed			5
Total	11	8	24

NTP / NTPsec Wins

- Interleaved Modes
- Pool Mode
- Manycast Mode
- Orphan Mode
- Dynamic Server Discovery

- IP-based Access Control
- Clock Selection
- Leap Second Handling
- NTPsec Modifications

Areas for Future Investigation

- Network Time Security (draft replacement for Autokey)
- Attacking reference clocks
 - Spoofing upstream time sources
 - Exploiting refclock drivers
- IP ACL consistency
- Clock selection
- ntpq traps

How You Can Help

- Conduct security evaluations
- Contribute developer resources to NTP and NTPsec
 - Modularization
 - Testing
- Contribute tooling and other infrastructure

CISCO TOMORROW starts here.

http://www.talosintel.com/vulnerability-reports/

Demo: Changing Time Using NAK to the Future

NTP Control Protocols (ntpq, ntpdc)

- Two control protocols: ntpq (mode 6), ntpdc (mode 7, deprecated)
- Read ntpd parameters: variables, counters, peer list, peer attributes

© 2015 Cisco and/or its affiliates. All rights reserved.

- Write many ntpd parameters
 - · Dynamic reconfiguration
 - Requires authentication
- Previously used in large-scale DDoS attacks
- Restricted to localhost by default on many modern systems

Hardening your NTP daemons

- Keep up on security patches
- Use safe default restrictions restrict default notrap nomodify nopeer
- Disable ntpdc entirely
- Restrict access to control protocols as much as possible

- Use firewall to limit local access to control protocols to authorized users
- Use firewall to restrict NTP traffic to configured peers
 - Clients: block inbound NTP packets that are not part of an established session
 - Servers: block inbound symmetric and server NTP packets that are not part of an established session

Hardening your NTP daemons

- Enable authentication if possible
- Disable unauthenticated traffic by default
- Whitelist known-good unauthenticated peers
- Use firewall rules to drop crypto-NAK packets
- Disable unpeering on error

- Remove unused ntp.conf trustedkeys
- Do not invoke ntpd with -g
- Run ntpd as an unprivileged user
- Confine ntpd using Mandatory Access Controls
- Consider chroot jailing ntpd

cisco