

One Billion Files:
Scalability Limits in Linux File Systems

Ric Wheeler
Architect & Manager, Red Hat

August 10, 2010

Overview
● Why Worry about 1 Billion Files?
● Storage Building Blocks
● Things File Systems Do & Performance
● File System Design Challenges & Futures

Why Worry about 1 Billion?

● 1 million files is so
1990

● 1 billion file support is
needed to fill up
modern storage!

How Much Storage Do 1 Billion Files
Need?

Disk Size 10KB Files 100KB Files 4MB Files 4TB Disk
Count

1 TB 100,000,000 10,000,000 250,000 1

10 TB 1,000,000,000 100,000,000 2,500,000 3

100 TB 10,000,000,000 1,000,000,000 25,000,000 25

4,000 TB 400,000,000,000 40,000,000,000 1,000,000,000 1,000

Why Not Use a Database?

● Users and system administrators are familiar
with file systems

– Backup, creation, etc are all well understood
● File systems handle partial failures pretty well

– Being able to recover part of the stored data is
useful for some applications

● File systems are “cheap” since they come with
your operating system!

Why Not Use Lots of Little File
Systems?

● Pushes the problem from the file system
designers down

– Application developers then need to code multi-
file system aware applications

– Users need to manually distribute files to
various file systems

● Space allocation done statically
● Harder to optimize disk seeks

– Bad to write to multiple file systems at once on
the same physical device

Overview
● Why Worry About 1 Billion Files?
● Storage Building Blocks
● Things File Systems Do & Performance
● File System Design Challenges & Futures

Traditional Spinning Disk

● Spinning platters store data
– Modern drives have a large, volatile write cache

(16+ MB)
– Streaming read/write performance of a single S-

ATA drive can sustain roughly 100MB/sec
– Seek latency bounds random IO to the order of

50-100 random IO's/sec
● This is the classic platform that operating

systems & applications are designed for
● High end 2TB drives go for around $200

External Disk Arrays

● External disk arrays can be very sophisticated
– Large non-volatile cache used to store data
– IO from a host normally lands in this cache

without hitting spinning media
● Performance changes

– Streaming reads and writes are vastly improved
– Random writes and reads are fast when they hit

cache
– Random reads can be very slow when they miss

cache
● Arrays usually start in the $20K range

SSD Devices
● S-ATA interface SSD's

– Streaming reads & writes are reasonable
– Random writes are normally slow
– Random reads are great!
– 1TB of S-ATA SSD is roughly $1k

● PCI-e interface SSD's enhance performance
across the board

– Provides array like bandwidth and low latency
random IO

– 320GB card for around $15k

How Expensive is 100TB?

● Build it yourself
– 4 SAS/S-ATA expansion shelves which hold 16

drives ($12k)
– 64 drives 2TB enterprise class drives ($19k)
– A bit over $30k in total

● Buy any mid-sized array from a real storage
vendor

● Most of us will have S-ATA JBODS or arrays
– SSD's still too expensive

Overview
● Why Worry About 1 Billion Files?
● Storage Building Blocks
● Things File Systems Do & Performance
● File System Design Challenges & Futures

File System Life Cycle

● Creation of a file system (mkfs)
● Filling the file system
● Iteration over the files
● Repairing the file system (fsck)
● Removing files

Making a File System – Elapsed
Time (sec)

S-ATA Disk - 1TB FS PCI-E SSD - 75GB FS
0

50

100

150

200

250

300

EXT3
EXT4
XFS
BTRFS

Creating 1M 50KB Files
– Elapsed Time (sec)

S-ATA Disk - 1TB FS PCI-E SSD - 75GB FS
0

2000

4000

6000

8000

10000

12000

EXT3
EXT4
XFS
BTRFS

File System Repair – Elapsed Time

S-ATA Disk - FSCK 1 Million Files PCI-E SSD - FSCK 1 Million Files
0

200

400

600

800

1000

1200

EXT3
EXT4
XFS
BTRFS

RM 1 Million Files – Elapsed Time

S-ATA Disk - RM 1 Million Files PCI-E SSD - RM 1 Million Files
0

500

1000

1500

2000

2500

3000

3500

4000

4500

EXT3
EXT4
XFS
BTRFS

What about the Billion Files?

“Millions of files may work; but 1 billion is
an utter absurdity. A filesystem that can
store reasonably 1 billion small files in 7TB
is an unsolved research issue...,”

 Post on the ext3 mailing list, 9/14/2009

.

What about the Billion Files?

“Strangely enough, I have been testing
ext4 and stopped filling it at a bit over 1
billion 20KB files on Monday (with 60TB of
storage). Running fsck on it took only 2.4
hours.”

 My reply post on the ext3 mailing list,
9/14/2009.

.

Billion File Ext4
● Unfortunately for the poster an Ext4 finished

earlier that week
– Used system described earlier

● MKFS
– 4 hours

● Filling the file system to 1 billion files
– 4 days

● Fsck with 1 billion files
– 2.5 hours

● Rates consistent for zero length and small files

What We Learned

● Ext4 fsck needs a lot of memory
– Ideas being floated to encode bitmaps more

effectively in memory
● Trial with XFS highlighted XFS's weakness for

meta-data intensive workloads
– Work ongoing to restructure journal operations

to improve this
● Btrfs testing would be very nice to get done at

this scale

Overview
● Why Worry About 1 Billion Files?
● Storage Building Blocks
● Things File Systems Do & Performance
● File System Design Challenges & Futures

Size the Hardware Correctly

● Big storage requires really big servers
– FSCK on the 70TB, 1 billion file system

consumed over 10GB of DRAM on ext4
– xfs_repair was more memory hungry on a large

file system and used over 30GB of DRAM
● Faster storage building blocks can be hugely

helpful
– Btrfs for example can use SSD's devices for

metadata & leave bulk data on less costly
storage

Iteration over 1 Billion is Slow

● “ls” is a really bad idea
– Iteration over that many files can be very IO

intensive
– Applications use readdir() & stat()
– Supporting d_type avoids the stat call but is not

universally done
● Performance of enumeration of small files

– Runs at roughly the same speed as file creation
– Thousands of files per second means several

days to get a full count

 Backup and Replication

● Remote replication or backup to tape is a very
long process

– Enumeration & read rates tank when other IO
happens concurrently

– Given the length of time, must be done on a live
system which is handling normal workloads

– Cgroups to the rescue?
● Things that last this long will experience failures

– Checkpoint/restart support is critical
– Minimal IO retry on a bad sector read

	Slide 1
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11
	Slide 12
	Slide 13
	Slide 14
	Slide 15
	Slide 16
	Slide 17
	Slide 18
	Slide 19
	Slide 20
	Slide 21
	Slide 22
	Slide 23
	Slide 24
	Slide 25

