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Why Worry about 1 Billion?

● 1 million files is so 
1990

● 1 billion file support is 
needed to fill up 
modern storage!



  

How Much Storage Do 1 Billion Files 
Need?

Disk Size 10KB Files 100KB Files 4MB Files 4TB Disk 
Count

1 TB 100,000,000 10,000,000 250,000 1

10 TB 1,000,000,000 100,000,000 2,500,000 3

100 TB 10,000,000,000 1,000,000,000 25,000,000 25

4,000 TB 400,000,000,000 40,000,000,000 1,000,000,000 1,000



  

Why Not Use a Database?

● Users and system administrators are familiar 
with file systems

– Backup, creation, etc are all well understood
● File systems handle partial failures pretty well

–  Being able to recover part of the stored data is 
useful for some applications

● File systems are “cheap” since they come with 
your operating system!



  

Why Not Use Lots of Little File 
Systems?

● Pushes the problem from the file system 
designers down

– Application developers then need to code multi-
file system aware applications

– Users need to manually distribute files to 
various file systems

● Space allocation done statically
● Harder to optimize disk seeks 

– Bad to write to multiple file systems at once on 
the same physical device
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Traditional Spinning Disk

● Spinning platters store data
– Modern drives have a large, volatile write cache 

(16+ MB)
– Streaming read/write performance of a single S-

ATA drive can sustain roughly 100MB/sec
– Seek latency bounds random IO to the order of 

50-100 random IO's/sec
● This is the classic platform that operating 

systems & applications are designed for 
● High end 2TB drives go for around $200 



  

External Disk Arrays

● External disk arrays can be very sophisticated
– Large non-volatile cache used to store data
– IO from a host normally lands in this cache 

without hitting spinning media
● Performance changes

– Streaming reads and writes are vastly improved
– Random writes and reads are fast when they hit 

cache
– Random reads can be very slow when they miss 

cache
● Arrays usually start in the $20K range



  

SSD Devices
● S-ATA interface SSD's

– Streaming reads & writes are reasonable
– Random writes are normally slow
– Random reads are great!
– 1TB of S-ATA SSD is roughly $1k

● PCI-e interface SSD's enhance performance 
across the board

– Provides array like bandwidth and low latency 
random IO

–  320GB card for around $15k



  

How Expensive is 100TB?

● Build it yourself
– 4 SAS/S-ATA expansion shelves which hold 16 

drives ($12k)
– 64 drives 2TB enterprise class drives ($19k)
– A bit over $30k in total

● Buy any mid-sized array from a real storage 
vendor

● Most of us will have S-ATA JBODS or arrays 
– SSD's still too expensive
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File System Life Cycle

● Creation of a file system (mkfs)
● Filling the file system
● Iteration over the files
● Repairing the file system (fsck)
● Removing files



  

Making a File System – Elapsed 
Time (sec)
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Creating 1M  50KB Files 
– Elapsed Time (sec)
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File System Repair – Elapsed Time 
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RM 1 Million Files – Elapsed Time 
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What about the Billion Files?

“Millions of files may work; but 1 billion is 
an utter absurdity. A filesystem that can 
store reasonably 1 billion small files in 7TB 
is an unsolved research issue...,” 

  Post on the ext3 mailing list, 9/14/2009

.



  

What about the Billion Files?

“Strangely enough, I have been testing 
ext4 and stopped filling it at a bit over 1 
billion 20KB files on Monday (with 60TB of 
storage). Running fsck on it took only 2.4 
hours.” 

  My reply post on the ext3 mailing list, 
9/14/2009.

.



  

Billion File Ext4
● Unfortunately for the poster an Ext4 finished 

earlier that week 
– Used system described earlier

● MKFS
–  4 hours 

● Filling the file system to 1 billion files
–  4 days

● Fsck with 1 billion files
– 2.5 hours

● Rates consistent for zero length and small files



  

What We Learned

● Ext4 fsck needs a lot of memory
– Ideas being floated to encode bitmaps more 

effectively in memory
● Trial with XFS highlighted XFS's weakness for 

meta-data intensive workloads
– Work ongoing to restructure journal operations 

to improve this
● Btrfs testing would be very nice to get done at 

this scale
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Size the Hardware Correctly

● Big storage requires really big servers
– FSCK on the 70TB, 1 billion file system 

consumed over 10GB of DRAM on ext4
– xfs_repair was more memory hungry on a large 

file system and used over 30GB of DRAM
● Faster storage building blocks can be hugely 

helpful
– Btrfs for example can use SSD's devices for 

metadata & leave bulk data on less costly 
storage



  

Iteration over 1 Billion is Slow

● “ls” is a really bad idea
– Iteration over that many files can be very IO 

intensive
– Applications use readdir() & stat() 
– Supporting d_type avoids the stat call but is not 

universally done
● Performance of enumeration of small files

– Runs at roughly the same speed as file creation
– Thousands of files per second means several 

days to get a full count



  

 Backup and Replication

● Remote replication or backup to tape is a very 
long process

– Enumeration & read rates tank when other IO 
happens concurrently

– Given the length of time, must be done on a live 
system which is handling normal workloads

– Cgroups to the rescue?
● Things that last this long will experience failures

– Checkpoint/restart support is critical
– Minimal IO retry on a bad sector read
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