

Transparent Hugepage Transparent Hugepage
SupportSupport

Red Hat, Inc.

Andrea Arcangeli
aarcange at redhat.com

Collaboration Summit
High Performance Computing track

San Francisco, CA

7April 2011Copyright © 2011 Red Hat Inc.

http://www.redhat.com/

Benefit of hugepagesBenefit of hugepages
➢ Boost CPU computing performance

➢ Enlarge TLB size
➢ TLB is also separate for 4k and 2m pages

➢ Speed up TLB miss
➢ Need 3 accesses to memory instead of 4 to

refill the TLB
➢ Faster to allocate memory initially (minor)
➢ Page colouring inside the hugepage (minor)

➢ Cons
➢ clear_page/copy_page less cache friendly
➢ Slightly higher memory footprint in some case

Copyright © 2011 Red Hat Inc.

TLB miss cost 4k pagesTLB miss cost 4k pages

Copyright © 2011 Red Hat Inc.

pgd

pud

pmd

pte

Virt
addr

RAM

TLB miss cost is 4 memory access

TLB miss cost 2M pagesTLB miss cost 2M pages

Copyright © 2011 Red Hat Inc.

pgd

pud

pmd

pte

Virt
addr

RAM

TLB miss cost is 3 memory access

NPT/EPT TLB miss cost:NPT/EPT TLB miss cost:
number of accesses to memorynumber of accesses to memory

Copyright © 2011 Red Hat Inc.

host THP off guest THP off

host THP on guest THP off

host THP off guest THP on

host THP on guest THP on

novirt THP off

novirt THP on

0 5 10 15 20 25

Cache effectCache effect

Copyright © 2011 Red Hat Inc.

➢ To access 16G of memory the CPU has to read
➢ 32MBytes worth of ptes with 4k pages (not

counting pmd/pud/pgd)
➢ With hugepages the CPU will read only

64KBytes of hugepmd with hugepages
➢ 64KBytes

➢ fit into CPU cache
➢ 32MBytes

➢ don't fit into CPU cache

Limit of hugetlbfsLimit of hugetlbfs

Copyright © 2011 Red Hat Inc.

➢ Hugepages can be used with hugetlbfs
➢ They can't be swapped out
➢ They better be reserved at boot
➢ Hugepages and regular pages can't be mixed

in the same vma (only userland fallback)
➢ If reservation is not used and dynamic

allocation fails things go bad in KVM
➢ Requires admin privilege and libhugetlbfs
➢ Hugetlbfs is growing like a second but

inferior Linux VM with its own paths, as
people add more features to hugetlbfs to
behave more like tmpfs

Hugetlbfs for databaseHugetlbfs for database
➢ Reservation at boot time may not be big deal with
database

➢ 1 database
➢ 1 machine
➢ 1 database cache
➢ 1 database cache size set in config file or GUI
➢ 1 reservation of hugepages with known size
➢ Swapping is still missing (some DBMS want to

swap its shared memory)
➢ Hugetlbfs is usually ok only for database

Copyright © 2011 Red Hat Inc.

Hypervisors and hugetlbfsHypervisors and hugetlbfs

Copyright © 2011 Red Hat Inc.

➢ Hugetlbfs is not good for KVM
➢ Unknown number of virtual machines
➢ Unknown amount of memory used by virtual

machines
➢ We want to use as many hugepages as

available to back guest physical memory
(especially with NPT/EPT)

➢ Virtual machines are started, shutdown,
migrated on demand by user or RHEV-M

➢ We need overcommit (and KSM) as usual
➢ We want all memory not allocated by the guest

available to the host for caching

Hugetlbfs userbaseHugetlbfs userbase
➢ Not many are using hugetlbfs on
laptop/workstation/server

➢ Too many complications (not transparent)
➢ Too many disadvantages/limitations

➢ As opposed: even the OpenOffice used to
prepare this presentation is backed by some
Transparent Hugepage...

Copyright © 2011 Red Hat Inc.

Transparent Hugepage designTransparent Hugepage design

Copyright © 2011 Red Hat Inc.

➢ Any Linux process will receive 2M pages
➢ if the mmap region is 2M naturally aligned

➢ Hugepages are only mapped by huge pmd
➢ When VM pressure triggers the hugepage are split

➢ Then they can be swapped out as 4k pages
➢ Tries to modify as little code as possible
➢ Entirely transparent to userland
➢ Already working with KVM with NPT/EPT and
shadow MMU

➢ Boost for page faults too and later the CPU
accesses memory faster

THP on anonymous memoryTHP on anonymous memory
➢ Current implementation only covers anonymous
memory (MAP_ANONYMOUS, i.e. malloc())

➢ KVM guest physical memory is incidentally
backed by anonymous memory...

➢ In the future database may require tmpfs to use
transparent hugepages too if they want to
swap

➢ database main painful limit of hugetlbfs is
the lack of swapping

Copyright © 2011 Red Hat Inc.

split_huge_pagesplit_huge_page

Copyright © 2011 Red Hat Inc.

➢ Low code impact
➢ Try to stay self contained

➢ If the code is not THP aware it's enough to call
split_huge_page() to make it THP aware

➢ then it's business as usual
➢ 1 liner trivial change vs >100 lines of non trivial
code

➢ Over time we need to minimize the use of
split_huge_page

➢ Like the big kernel lock (lock_kernel() going
away over time where avoidable)

collapse_huge_page/khugepagedcollapse_huge_page/khugepaged

Copyright © 2011 Red Hat Inc.

➢ “khugepaged” scans the virtual address space
➢ it collapses 512 4k pages in one 2M page
➢ it converts the 512 ptes to a huge pmd

➢ “khugepaged” can undo the effect of
split_huge_page

➢ Like after swapin

THP sysfs enabledTHP sysfs enabled
➢ /sys/kernel/mm/transparent_hugepage/enabled

➢ [always] madvise never
➢ Try to use THP on every big enough vma to

fit 2M pages
➢ always [madvise] never

➢ Only inside MAD_HUGEPAGE regions
➢ Applies to khugepaged too

➢ always madvise [never]
➢ Never use THP
➢ khugepaged quits

➢ Default selected at build time (enabled|madvise)
Copyright © 2011 Red Hat Inc.

THP kernel boot paramTHP kernel boot param
➢ To alter the default build time setting

➢ transparent_hugepage=always
➢ transparent_hugepage=madvise
➢ transparent_hugepage=never

➢ khugepaged isn't even started

Copyright © 2011 Red Hat Inc.

khugepaged sysfskhugepaged sysfs
➢ /sys/kernel/mm/transparent_hugepage/khugepaged

➢ pages_to_scan (default 4096 = 16MB)
➢ Number of pages to scan at each wakeup

➢ scan_sleep_millisecs (default 10000 = 10sec)
➢ How long before khugepaged is waken up

to scan “pages_to_scan” virtual pages
➢ 0 value run khugepaged at 100% load

➢ alloc_sleep_millisecs (default 60000 = 60sec)
➢ How long to wait before trying again

allocating an hugepage in case of
fragmentation

Copyright © 2011 Red Hat Inc.

THP monitoringTHP monitoring
$ grep Anon /proc/meminfo
AnonPages: 15719600 kB
AnonHugePages: 14436352 kB
$ cat /proc/`pgrep mutt`/smaps|grep Anon
Anonymous: 0 kB
AnonHugePages: 0 kB
Anonymous: 4 kB
AnonHugePages: 0 kB
Anonymous: 20 kB
AnonHugePages: 0 kB
Anonymous: 20 kB
AnonHugePages: 0 kB
Anonymous: 69400 kB
AnonHugePages: 67584 kB
[..]

Copyright © 2011 Red Hat Inc.

THP vmstatTHP vmstat
$ grep thp /proc/vmstat #during heavy swap
thp_fault_alloc 66608

➢ Transparent Hugepages allocated in page faults
➢ The higher the better

thp_fault_fallback 546
➢ Failure in allocating hugepage in fault → fallback to 4k

➢ The lower the better

thp_collapse_alloc 113
➢ Transparent Hugepages collapsed by khugepaged

thp_collapse_alloc_failed 5
➢ Failure in allocating hugepage in khugepaged

thp_split 22608
➢ Number of split_huge_page()

➢ The lower the better
Copyright © 2011 Red Hat Inc.

Optimizing apps for THPOptimizing apps for THP

Copyright © 2011 Red Hat Inc.

➢ Not really required
➢ Mutt example → unmodified:

– Anonymous: 69400 kB
– AnonHugePages: 67584 kB

➢ posix_memalign(&ptr, 2M, (size+2M-1) & ~(2M-1))
➢ Allows max 2 more THP allocated per mapping

➢ Generally not very important
➢ Only KVM requires this: gfn → hva → pfn

➢ Glibc could learn to auto-align large mappings
➢ 4M for x86 32bit noPAE

madvise(MADV_HUGEPAGE)madvise(MADV_HUGEPAGE)

Copyright © 2011 Red Hat Inc.

➢ To use hugepages only in specific regions
➢ To avoid altering the memory footprint

➢ Embedded systems want to use it
➢ Makes a difference only when
“/sys/kernel/mm/transparent_hugepage/enabled”
is set to “madvise”

➢ Better than libhugetlbfs for embedded:
➢ swap enabled
➢ full userland transparency
➢ no root privilege
➢ no library dependency

Transparent Hugepages and KVMTransparent Hugepages and KVM
➢ We need THP in both guest and host

➢ So the CPU can use the 2M TLB for the guest
➢ This shows the power of KVM design

➢ same algorithm
➢ same code
➢ same kernel image

➢ For both KVM hypervisor and guest OS

Copyright © 2011 Red Hat Inc.

 RHEL6 Linux Intel EP Specjbb Java
 Bare-Metal Huge/Transparent Huge Pages

4cpu 8cpu 16cpu

0

50

100

150

200

250

300

350

100.0%

102.0%

104.0%

106.0%

108.0%

110.0%

112.0%

114.0%

116.0%

118.0%

RHEL5.5 /6 SPECjbb Scaling Intel EX

RHEL5.4
RHEL6
RHEL5 Huge
RHEL6 Huge
R6 vs R5

bo
ps

 (k
)

 RHEL6/6.1 KVM Linux Intel Westmere EP
 Specjbb transparent hugepages/unfair_spin

No-THTP THTP
0

100000

200000

300000

400000

500000

600000

90.0%

90.5%

91.0%

91.5%

92.0%

92.5%

93.0%

93.5%

94.0%

94.5%

95.0%

91.5%

94.4%

RHEL6/6.1 SPECjbb

24-cpu, 24 vcpu Westmere EP, 24GB

r6-metal
r6-guest
r5-ojdk
%virt r6

THP and kbuildTHP and kbuild
➢ GCC allocations are specially optimized (gcc isn't
using glibc malloc)

➢ Requires a small tweak to gcc
➢ Heavily parallel
➢ Heavily MMU intensive
➢ Worst case benchmark for THP, especially on bare
metal

➢ Small working set for each task
➢ It even includes `make clean` etc...

➢ Phenom X4 kbuild (no virt)
➢ 2.5% faster with THP

Copyright © 2011 Red Hat Inc.

gcc patch (trivial)gcc patch (trivial)
➢ @@ -450,6 +450,11 @@
➢ #define BITMAP_SIZE(Num_objects) \
➢ (CEIL ((Num_objects), HOST_BITS_PER_LONG) * sizeof(long))
➢
➢ +#ifdef __x86_64__
➢ +#define HPAGE_SIZE (2*1024*1024)
➢ +#define GGC_QUIRE_SIZE 512
➢ +#endif
➢ +
➢ /* Allocate pages in chunks of this size, to throttle calls to memory
➢ allocation routines. The first page is used, the rest go onto the
➢ free list. This cannot be larger than HOST_BITS_PER_INT for the
➢ @@ -654,6 +659,23 @@
➢ #ifdef HAVE_MMAP_ANON
➢ char *page = (char *) mmap (pref, size, PROT_READ | PROT_WRITE,
➢ MAP_PRIVATE | MAP_ANONYMOUS, -1, 0);
➢ +#ifdef HPAGE_SIZE
➢ + if (!(size & (HPAGE_SIZE-1)) &&
➢ + page != (char *) MAP_FAILED && (size_t) page & (HPAGE_SIZE-1)) {
➢ + char *old_page;
➢ + munmap(page, size);
➢ + page = (char *) mmap (pref, size + HPAGE_SIZE-1,
➢ + PROT_READ | PROT_WRITE,
➢ + MAP_PRIVATE | MAP_ANONYMOUS, -1, 0);
➢ + old_page = page;
➢ + page = (char *) (((size_t)page + HPAGE_SIZE-1)
➢ + & ~(HPAGE_SIZE-1));
➢ + if (old_page != page)
➢ + munmap(old_page, page-old_page);
➢ + if (page != old_page + HPAGE_SIZE-1)
➢ + munmap(page+size, old_page+HPAGE_SIZE-1-page);
➢ + }
➢ +#endif
➢Copyright © 2011 Red Hat Inc.

`perf` of kbuild (real life)`perf` of kbuild (real life)
24-way SMP (12 cores, 2 sockets) 16G RAM host, 24-vcpu 15G RAM guest

====== build ======
#!/bin/bash
make clean >/dev/null; make -j32 >/dev/null
===================
THP always host (base result)
 Performance counter stats for './build' (3 runs):

 4420734012848 cycles (+- 0.007%)
 2692414418384 instructions # 0.609 IPC (+- 0.000%)
 696638665612 dTLB-loads (+- 0.001%)
 2982343758 dTLB-load-misses (+- 0.051%)

 83.855147696 seconds time elapsed (+- 0.058%)

THP never host (slowdown 4.06%)
 Performance counter stats for './build' (3 runs):
 4599325985460 cycles (+- 0.013%)
 2747874065083 instructions # 0.597 IPC (+- 0.000%)
 710631792376 dTLB-loads (+- 0.000%)
 4425816093 dTLB-load-misses (+- 0.039%)

 87.260443531 seconds time elapsed (+- 0.075%)

Copyright © 2011 Red Hat Inc.

kbuild benchkbuild bench
build time: lower is betterbuild time: lower is better

Copyright © 2011 Red Hat Inc.

bare metal THP on

bare metal THP off

KVM guest THP on host THP on EPT on

KVM guest THP off host THP on EPT on

KVM guest THP off host THP off EPT on

KVM guest THP on host THP on EPT off

KVM guest THP off host THP on EPT off

KVM guest THP off host THP off EPT off

0 50 100 150 200 250 300 350

198.33% increase

254.43% increase

260.15% increase

base

x seconds

24.81% increase in build time

12.71% increase in build time

5.67% increase in build time

4.06% increase in build time

qemu-kvm translate.oqemu-kvm translate.o
➢ Phenom X4 qemu-kvm translate.o build (no virt)

➢ 10% faster with THP
➢ this is a single gcc task running

➢ Not parallel
➢ no `make -jxx`
➢ no `make clean`

➢ Will follow the result on 24-way SMP

Copyright © 2011 Red Hat Inc.

`perf` profiling of translate.o`perf` profiling of translate.o
24-way SMP (12 cores, 2 sockets) 16G RAM host, 24-vcpu 15G RAM guest

THP always bare metal (base result)

 40746051351 cycles (+- 5.597%)
 36394696366 instructions # 0.893 IPC (+- 0.007%)
 9602461977 dTLB-loads (+- 0.006%)
 45123574 dTLB-load-misses (+- 0.614%)

 13.920436128 seconds time elapsed (+- 5.600%)

THP never bare metal (9.10% slower)

 44492051930 cycles (+- 5.189%)
 36757849113 instructions # 0.826 IPC (+- 0.001%)
 9693482648 dTLB-loads (+- 0.004%)
 63675970 dTLB-load-misses (+- 0.598%)

 15.188315986 seconds time elapsed (+- 5.194%)

Copyright © 2011 Red Hat Inc.

bare metal THP on

bare metal THP off

KVM guest THP on host THP on EPT on

KVM guest THP off host THP on EPT on

KVM guest THP off host THP off EPT on

KVM guest THP on host THP on EPT off

KVM guest THP off host THP on EPT off

KVM guest THP off host THP off EPT off

0 2 4 6 8 10 12 14 16 18 20

seconds

kbuild “EPT off”kbuild “EPT off”
build time: lower is betterbuild time: lower is better

Copyright © 2011 Red Hat Inc.

9.10% increase in build time

3.45% decrease in build time

15.84% increase in build time

Base result

21.17% increase

0.11% increases

25.20% increase

28.48% increase

Copyright © 2011 Red Hat Inc.

Phoronix test suitePhoronix test suite
➢ http://www.phoronix.com/scan.php?page=article&item=linux_transparent_hugepages&num=2

➢ IS.C test of NASA's OpenMP-based performance
boost more than 20%

➢ No virt
➢ On thinkpad T16 notebook

➢ Core 2 Duo T9300
➢ 4GB of RAM

➢ A bigger boost is expected on server/virt

http://www.phoronix.com/scan.php?page=article&item=linux_transparent_hugepages&num=2

Other resultsOther results
➢ “/usr/bin/sort -b 1200M /tmp/largerand” no virt

➢ 6% faster with THP (reported on lkml)
➢ Vmware workstation SPECJBB with hugetlbfs in
guest

➢ 22% faster with THP (reported on lkml)

Copyright © 2011 Red Hat Inc.

Transparent Hugepages statusTransparent Hugepages status
➢ Fully merged in 2.6.38 upstream
➢ Memory compaction included in 2.6.35

➢ Memory compaction motivated by THP
➢ THP enabled by default in RHEL6 (guest & host)
➢ KSM fully THP aware (2.6.38 and RHEL6.1)

➢ Mix of PageKsm, PageTransHuge and regular
anon pages in the same vma

➢ All 3 kind of anonymous pages swappable
➢ mprotect/mincore/memcg THP support in 2.6.38
➢ /proc/<pid>/smaps support in 2.6.39-rc

Copyright © 2011 Red Hat Inc.

THP future optimizationsTHP future optimizations
➢ mremap THP support + tlb boost ready for -mm
➢ Remove tlb flush in pmdp_splitting_flush_notify()
➢ Avoid some unnecessary split_huge_page:

➢ migrate_pages()/move_pages() syscall
➢ More glibc awareness for automatic alignments of
large mmap

➢ pagecache
➢ tmpfs
➢ swapcache (i.e. native THP swapping)
➢ Maybe filebacked mappings?

Copyright © 2011 Red Hat Inc.

Q/AQ/A
➢ You're very welcome!

➢ Latest development THP code
➢ http://git.kernel.org and then search “aa.git”

➢ First: git clone
git://git.kernel.org/pub/scm/linux/kernel/git/andrea/aa.git

➢ Later: git fetch && git checkout -f origin/master

Copyright © 2011 Red Hat Inc.

http://git.kernel.org/

	Slide 1
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11
	Slide 12
	Slide 13
	Slide 14
	Slide 15
	Slide 16
	Slide 17
	Slide 18
	Slide 19
	Slide 20
	Slide 21
	Slide 22
	Slide 23
	Slide 24
	Slide 25
	Slide 26
	Slide 27
	Slide 28
	Slide 29
	Slide 30
	Slide 31
	Slide 32
	Slide 33
	Slide 34
	Slide 35
	Slide 36

