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Benefit of hugepagesBenefit of hugepages
➢ Boost CPU computing performance

➢ Enlarge TLB size
➢ TLB is also separate for 4k and 2m pages

➢ Speed up TLB miss
➢ Need 3 accesses to memory instead of 4 to 

refill the TLB
➢ Faster to allocate memory initially (minor)
➢ Page colouring inside the hugepage (minor)

➢ Cons
➢ clear_page/copy_page less cache friendly
➢ Slightly higher memory footprint in some case
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TLB miss cost 4k pagesTLB miss cost 4k pages
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TLB miss cost 2M pagesTLB miss cost 2M pages
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NPT/EPT TLB miss cost:NPT/EPT TLB miss cost:
number of accesses to memorynumber of accesses to memory
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Cache effectCache effect
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➢ To access 16G of memory the CPU has to read
➢ 32MBytes worth of ptes with 4k pages (not 

counting pmd/pud/pgd)
➢ With hugepages the CPU will read only 

64KBytes of hugepmd with hugepages
➢ 64KBytes

➢ fit into CPU cache
➢ 32MBytes

➢ don't fit into CPU cache



  

Limit of hugetlbfsLimit of hugetlbfs
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➢ Hugepages can be used with hugetlbfs
➢ They can't be swapped out
➢ They better be reserved at boot
➢ Hugepages and regular pages can't be mixed 

in the same vma (only userland fallback)
➢ If reservation is not used and dynamic 

allocation fails things go bad in KVM
➢ Requires admin privilege and libhugetlbfs
➢ Hugetlbfs is growing like a second but 

inferior Linux VM with its own paths, as 
people add more features to hugetlbfs to 
behave more like tmpfs



  

Hugetlbfs for databaseHugetlbfs for database
➢ Reservation at boot time may not be big deal with 
database

➢ 1 database
➢ 1 machine
➢ 1 database cache
➢ 1 database cache size set in config file or GUI
➢ 1 reservation of hugepages with known size
➢ Swapping is still missing (some DBMS want to 

swap its shared memory)
➢ Hugetlbfs is usually ok only for database
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Hypervisors and hugetlbfsHypervisors and hugetlbfs
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➢ Hugetlbfs is not good for KVM
➢ Unknown number of virtual machines
➢ Unknown amount of memory used by virtual 

machines
➢ We want to use as many hugepages as 

available to back guest physical memory 
(especially with NPT/EPT)

➢ Virtual machines are started, shutdown, 
migrated on demand by user or RHEV-M

➢ We need overcommit (and KSM) as usual
➢ We want all memory not allocated by the guest 

available to the host for caching



  

Hugetlbfs userbaseHugetlbfs userbase
➢ Not many are using hugetlbfs on 
laptop/workstation/server

➢ Too many complications (not transparent)
➢ Too many disadvantages/limitations

➢ As opposed: even the OpenOffice used to 
prepare this presentation is backed by some 
Transparent Hugepage...
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Transparent Hugepage designTransparent Hugepage design
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➢ Any Linux process will receive 2M pages
➢ if the mmap region is 2M naturally aligned

➢ Hugepages are only mapped by huge pmd
➢ When VM pressure triggers the hugepage are split

➢ Then they can be swapped out as 4k pages
➢ Tries to modify as little code as possible
➢ Entirely transparent to userland
➢ Already working with KVM with NPT/EPT and 
shadow MMU

➢ Boost for page faults too and later the CPU 
accesses memory faster



  

THP on anonymous memoryTHP on anonymous memory
➢ Current implementation only covers anonymous 
memory (MAP_ANONYMOUS, i.e. malloc())

➢ KVM guest physical memory is incidentally 
backed by anonymous memory...

➢ In the future database may require tmpfs to use 
transparent hugepages too if they want to 
swap

➢ database main painful limit of hugetlbfs is 
the lack of swapping
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split_huge_pagesplit_huge_page
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➢ Low code impact
➢ Try to stay self contained

➢ If the code is not THP aware it's enough to call 
split_huge_page() to make it THP aware

➢ then it's business as usual
➢ 1 liner trivial change vs >100 lines of non trivial 
code

➢ Over time we need to minimize the use of 
split_huge_page

➢ Like the big kernel lock (lock_kernel() going 
away over time where avoidable)



  

collapse_huge_page/khugepagedcollapse_huge_page/khugepaged
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➢ “khugepaged” scans the virtual address space
➢ it collapses 512 4k pages in one 2M page
➢ it converts the 512 ptes to a huge pmd

➢ “khugepaged” can undo the effect of 
split_huge_page

➢ Like after swapin



  

THP sysfs enabledTHP sysfs enabled
➢ /sys/kernel/mm/transparent_hugepage/enabled

➢ [always] madvise never
➢ Try to use THP on every big enough vma to 

fit 2M pages
➢ always [madvise] never

➢ Only inside MAD_HUGEPAGE regions
➢ Applies to khugepaged too

➢ always madvise [never]
➢ Never use THP
➢ khugepaged quits

➢ Default selected at build time (enabled|madvise)
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THP kernel boot paramTHP kernel boot param
➢ To alter the default build time setting

➢ transparent_hugepage=always
➢ transparent_hugepage=madvise
➢ transparent_hugepage=never

➢ khugepaged isn't even started
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khugepaged sysfskhugepaged sysfs
➢ /sys/kernel/mm/transparent_hugepage/khugepaged

➢ pages_to_scan (default 4096 = 16MB)
➢ Number of pages to scan at each wakeup

➢ scan_sleep_millisecs (default 10000 = 10sec)
➢ How long before khugepaged is waken up 

to scan “pages_to_scan” virtual pages
➢ 0 value run khugepaged at 100% load

➢ alloc_sleep_millisecs (default 60000 = 60sec)
➢ How long to wait before trying again 

allocating an hugepage in case of 
fragmentation
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THP monitoringTHP monitoring
$ grep Anon /proc/meminfo
AnonPages:      15719600 kB
AnonHugePages:  14436352 kB
$ cat /proc/`pgrep mutt`/smaps|grep Anon
Anonymous:             0 kB
AnonHugePages:         0 kB
Anonymous:             4 kB
AnonHugePages:         0 kB
Anonymous:            20 kB
AnonHugePages:         0 kB
Anonymous:            20 kB
AnonHugePages:         0 kB
Anonymous:         69400 kB
AnonHugePages:     67584 kB
[..]
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THP vmstatTHP vmstat
$ grep thp /proc/vmstat #during heavy swap
thp_fault_alloc 66608

➢ Transparent Hugepages allocated in page faults
➢ The higher the better

thp_fault_fallback 546
➢ Failure in allocating hugepage in fault → fallback to 4k

➢ The lower the better

thp_collapse_alloc 113
➢ Transparent Hugepages collapsed by khugepaged

thp_collapse_alloc_failed 5
➢ Failure in allocating hugepage in khugepaged

thp_split 22608
➢ Number of split_huge_page()

➢ The lower the better
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Optimizing apps for THPOptimizing apps for THP
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➢ Not really required
➢ Mutt example → unmodified:

– Anonymous:         69400 kB
– AnonHugePages:     67584 kB

➢ posix_memalign(&ptr, 2M, (size+2M-1) & ~(2M-1))
➢ Allows max 2 more THP allocated per mapping

➢ Generally not very important
➢ Only KVM requires this: gfn → hva → pfn

➢ Glibc could learn to auto-align large mappings
➢ 4M for x86 32bit noPAE



  

madvise(MADV_HUGEPAGE)madvise(MADV_HUGEPAGE)
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➢ To use hugepages only in specific regions
➢ To avoid altering the memory footprint

➢ Embedded systems want to use it
➢ Makes a difference only when 
“/sys/kernel/mm/transparent_hugepage/enabled” 
is set to “madvise”

➢ Better than libhugetlbfs for embedded:
➢ swap enabled
➢ full userland transparency
➢ no root privilege
➢ no library dependency



  

Transparent Hugepages and KVMTransparent Hugepages and KVM
➢ We need THP in both guest and host

➢ So the CPU can use the 2M TLB for the guest
➢ This shows the power of KVM design

➢ same algorithm
➢ same code
➢ same kernel image

➢ For both KVM hypervisor and guest OS
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THP and kbuildTHP and kbuild
➢ GCC allocations are specially optimized (gcc isn't 
using glibc malloc)

➢ Requires a small tweak to gcc
➢ Heavily parallel
➢ Heavily MMU intensive
➢ Worst case benchmark for THP, especially on bare 
metal

➢ Small working set for each task
➢ It even includes `make clean` etc...

➢ Phenom X4 kbuild (no virt)
➢ 2.5% faster with THP
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gcc patch (trivial)gcc patch (trivial)
➢ @@ -450,6 +450,11 @@
➢  #define BITMAP_SIZE(Num_objects) \
➢    (CEIL ((Num_objects), HOST_BITS_PER_LONG) * sizeof(long))
➢  
➢ +#ifdef __x86_64__
➢ +#define HPAGE_SIZE (2*1024*1024)
➢ +#define GGC_QUIRE_SIZE 512
➢ +#endif
➢ +
➢  /* Allocate pages in chunks of this size, to throttle calls to memory
➢     allocation routines.  The first page is used, the rest go onto the
➢     free list.  This cannot be larger than HOST_BITS_PER_INT for the
➢ @@ -654,6 +659,23 @@
➢  #ifdef HAVE_MMAP_ANON
➢    char *page = (char *) mmap (pref, size, PROT_READ | PROT_WRITE,
➢                               MAP_PRIVATE | MAP_ANONYMOUS, -1, 0);
➢ +#ifdef HPAGE_SIZE
➢ +  if (!(size & (HPAGE_SIZE-1)) &&
➢ +      page != (char *) MAP_FAILED && (size_t) page & (HPAGE_SIZE-1)) {
➢ +         char *old_page;
➢ +         munmap(page, size);
➢ +         page = (char *) mmap (pref, size + HPAGE_SIZE-1,
➢ +                               PROT_READ | PROT_WRITE,
➢ +                               MAP_PRIVATE | MAP_ANONYMOUS, -1, 0);
➢ +         old_page = page;
➢ +         page = (char *) (((size_t)page + HPAGE_SIZE-1)
➢ +                          & ~(HPAGE_SIZE-1));
➢ +         if (old_page != page)
➢ +                 munmap(old_page, page-old_page);
➢ +         if (page != old_page + HPAGE_SIZE-1)
➢ +                 munmap(page+size, old_page+HPAGE_SIZE-1-page);
➢ +  }
➢ +#endif
➢Copyright © 2011 Red Hat Inc.



  

`perf` of kbuild (real life)`perf` of kbuild (real life)
24-way SMP (12 cores, 2 sockets) 16G RAM host, 24-vcpu 15G RAM guest

====== build ======
#!/bin/bash
make clean >/dev/null; make -j32 >/dev/null
===================
THP always host (base result)
 Performance counter stats for './build' (3 runs):

      4420734012848  cycles                     ( +-   0.007% )
      2692414418384  instructions             #      0.609 IPC     ( +-   0.000% )
       696638665612  dTLB-loads                 ( +-   0.001% )
         2982343758  dTLB-load-misses           ( +-   0.051% )

       83.855147696  seconds time elapsed   ( +-   0.058% )

THP never host (slowdown 4.06%)
 Performance counter stats for './build' (3 runs):
      4599325985460  cycles                     ( +-   0.013% )
      2747874065083  instructions             #      0.597 IPC     ( +-   0.000% )
       710631792376  dTLB-loads                 ( +-   0.000% )
         4425816093  dTLB-load-misses           ( +-   0.039% )

       87.260443531  seconds time elapsed   ( +-   0.075% )
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kbuild benchkbuild bench
build time: lower is betterbuild time: lower is better
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qemu-kvm translate.oqemu-kvm translate.o
➢ Phenom X4 qemu-kvm translate.o build (no virt)

➢ 10% faster with THP
➢ this is a single gcc task running

➢ Not parallel
➢ no `make -jxx`
➢ no `make clean`

➢ Will follow the result on 24-way SMP
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`perf` profiling of translate.o`perf` profiling of translate.o
24-way SMP (12 cores, 2 sockets) 16G RAM host, 24-vcpu 15G RAM guest

THP always bare metal (base result)

        40746051351  cycles                     ( +-   5.597% )
        36394696366  instructions             #      0.893 IPC     ( +-   0.007% )
         9602461977  dTLB-loads                 ( +-   0.006% )
           45123574  dTLB-load-misses           ( +-   0.614% )

       13.920436128  seconds time elapsed   ( +-   5.600% )

THP never bare metal (9.10% slower)

        44492051930  cycles                     ( +-   5.189% )
        36757849113  instructions             #      0.826 IPC     ( +-   0.001% )
         9693482648  dTLB-loads                 ( +-   0.004% )
           63675970  dTLB-load-misses           ( +-   0.598% )

       15.188315986  seconds time elapsed   ( +-   5.194% )
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build time: lower is betterbuild time: lower is better
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9.10% increase in build   time

3.45% decrease in      build time
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Phoronix test suitePhoronix test suite
➢ http://www.phoronix.com/scan.php?page=article&item=linux_transparent_hugepages&num=2

➢ IS.C test of NASA's OpenMP-based performance 
boost more than 20%

➢ No virt
➢ On thinkpad T16 notebook

➢ Core 2 Duo T9300
➢ 4GB of RAM

➢ A bigger boost is expected on server/virt

http://www.phoronix.com/scan.php?page=article&item=linux_transparent_hugepages&num=2


  

Other resultsOther results
➢ “/usr/bin/sort -b 1200M /tmp/largerand” no virt

➢ 6% faster with THP (reported on lkml)
➢ Vmware workstation SPECJBB with hugetlbfs in 
guest

➢ 22% faster with THP (reported on lkml)
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Transparent Hugepages statusTransparent Hugepages status
➢ Fully merged in 2.6.38 upstream
➢ Memory compaction included in 2.6.35

➢ Memory compaction motivated by THP
➢ THP enabled by default in RHEL6 (guest & host)
➢ KSM fully THP aware (2.6.38 and RHEL6.1)

➢ Mix of PageKsm, PageTransHuge and regular 
anon pages in the same vma

➢ All 3 kind of anonymous pages swappable
➢ mprotect/mincore/memcg THP support in 2.6.38
➢ /proc/<pid>/smaps support in 2.6.39-rc
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THP future optimizationsTHP future optimizations
➢ mremap THP support + tlb boost ready for -mm
➢ Remove tlb flush in pmdp_splitting_flush_notify()
➢ Avoid some unnecessary split_huge_page:

➢ migrate_pages()/move_pages() syscall
➢ More glibc awareness for automatic alignments of 
large mmap

➢ pagecache
➢ tmpfs
➢ swapcache (i.e. native THP swapping)
➢ Maybe filebacked mappings?
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Q/AQ/A
➢ You're very welcome!

➢ Latest development THP code
➢  http://git.kernel.org and then search “aa.git”

➢ First: git clone 
git://git.kernel.org/pub/scm/linux/kernel/git/andrea/aa.git

➢ Later: git fetch && git checkout -f origin/master

Copyright © 2011 Red Hat Inc.
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