
Linux is a registered trademark of Linus Torvalds.

An Updated Overview of the
QEMU Storage Stack

Stefan Hajnoczi – stefanha@linux.vnet.ibm.com
Open Virtualization
IBM Linux Technology Center

2011

The topic

● What is the QEMU storage stack?
● Configuring the storage stack
● Recent and future developments

– “Cautionary statement regarding forward-
looking statements”

QEMU and its uses

● “QEMU is a generic and open source machine
emulator and virtualizer”

– http://www.qemu.org/
● Emulation:

– For cross-compilation, development
environments

– Android Emulator, shipping in an Android
SDK near you

● Virtualization:
– KVM and Xen use QEMU device emulation

http://www.qemu.org/

Storage in QEMU
● Devices and media:

– Floppy, CD-ROM, USB stick, SD card,
harddisk

● Host storage:
– Flat files (img, iso)

● Also over NFS
– CD-ROM host device (/dev/cdrom)
– Block devices (/dev/sda3, LVM volumes,

iSCSI LUNs)
– Distributed storage (Sheepdog, Ceph)

QEMU -drive option
qemu -drive

if=ide|virtio|scsi,
file=path/to/img,
cache=writethrough|writeback|none|unsafe

● Storage interface is set with if=
● Path to image file or device is set with path=
● Caching mode is set with cache=

● More on what this means later, but first the
picture of the overall storage stack...

The QEMU storage stack

Application

File system & block layer

Driver

Hardware emulation

Image format (optional)

File system & block layer

Driver

•Application and guest kernel
work similar to bare metal.
•Guest talks to QEMU via
emulated hardware.

•QEMU performs I/O to an
image file on behalf of the
guest.
•Host kernel treats guest I/O
like any userspace
application.

Guest QEMU Host

Seeing double
● There may be two file systems. The guest file

system and the host file system (which holds
the image file).

● There may be two volume managers. The
guest and host can both use LVM and md
independently.

● There are two page caches. Both guest and
host can buffer pages from a file.

● There are two I/O schedulers. The guest will
reorder or delay I/O but the host will too.

● Configuring either the guest or the host to
bypass these layers typically leads to best
performance.

Emulated storage overview

Application

File system & block layer

Driver

Hardware emulation

Image format (optional)

File system & block layer

Driver

Guest QEMU Host

Emulated storage
● QEMU presents emulated storage interfaces to

the guest
● Virtio is a paravirtualized storage interface,

delivers the best performance, and is extensible
for the future

– One virtio-blk PCI adapter per block device
● IDE emulation is used for CD-ROMs and is also

available for disks
– Good guest compatibility but low

performance
● SCSI emulation can be used for special

applications but is still under development

Emulated storage in the
future

● SATA (AHCI) emulation
– Currently experimental
– Promises better performance than IDE
– Relatively wide compatibility

● Renewed focus on SCSI
– Patches to make SCSI emulation robust

continue to come in, though slowly
– Virtio-scsi is being prototyped
– Industry standard, rich features

Host page cache overview

Application

File system & block layer

Driver

Hardware emulation

Image format (optional)

File system & block layer

Driver

Guest QEMU Host

Host page cache
● Writes complete after copying data to page

cache
● Cache is flushed on fsync(2)
● Reads may be satisfied from the cache
● Guest has its own page cache

– Two copies of data in memory
● Disabling host page cache:

– O_DIRECT I/O on the host
– Bypasses host page cache when possible
– Zero-copy when possible

Guest disk write cache
overview

Application

File system & block layer

Driver

Hardware emulation

Image format (optional)

File system & block layer

Driver

Guest QEMU Host

Guest disk write cache
● Disk completes writes after they reach cache

– Data may not be on disk
● Volatile disk write cache loses contents on

power failure
– Correct applications fsync(2) to guarantee

data is on disk
● When write cache is disabled:

– Writes complete when they are on disk
– Write performance is reduced

● Enabling write cache:
– Improves write performance
– Only ensures data integrity if applications

and storage stack flush cache correctly

Caching modes in QEMU
Mode Host page cache Guest disk write cache

none off on
writethrough on off

writeback on on
unsafe on ignored

● Default is writethrough
● Unsafe is a new mode that ignores cache flush

operations
– Only use for temporary data
– Useful for speeding up guest installs
– Switch to another mode for production

Caching modes in the future
● Guest control over disk write cache (WCE)

– Real disks allow WCE toggling at runtime
– Lets guest determine whether to enable

● Useful for hosting or cloud environments
● Ability to change host page cache option at

runtime
– Today QEMU requires restart to change host

page cache

Image formats overview

Application

File system & block layer

Driver

Hardware emulation

Image format (optional)

File system & block layer

Driver

Guest QEMU Host

Image formats
● Supported image formats:

– QCOW2, QED – QEMU
– VMDK – VMware
– VHD – Microsoft
– VDI – VirtualBox

● Features that various image formats provide:
– Sparse images
– Backing files (delta images)
– Encryption
– Compression
– Snapshots

How image formats work

● Map logical block addresses to file offsets
● Apply transformations on data (compression,

encryption)

Metadata Data

Block device

Image file

I/O from guest

1. Map/allocate 2. Transfer data

Manipulating image files
● Only raw image files can be loopback mounted

– Use qemu-nbd to access image files on host
● http://tinyurl.com/qemu-nbd

– Or use the powerful libguestfs:
● Http://libguestfs.org/

● Convert image formats with qemu-img
– Qemu-img is the Rosetta Stone of image

formats
– Supports all image formats that QEMU does
– Stand-alone program, can be used without

installing QEMU

http://tinyurl.com/qemu-nbd
http://libguestfs.org/

Image formats in the future
● Improving VMDK compatibility

– Adding support for latest file format versions
– Google Summer of Code 2011 project

● QCOW2<->QED in-place conversion
– Convert formats without copying data
– Google Summer of Code 2011 project

● QED image streaming
– Start new guest immediately, populate data

from backing file as it runs
● QCOW2v3

– Currently in design phase
– Enhance format with new ideas and address

pain points

Recommendations

● Emulated storage interface:
– Virtio for Linux and Windows guests
– IDE when virtio is not possible

● Caching mode:
– cache=none for local storage

● Host storage:
– LVM if flexibility of image files not needed
– Raw image files if features not needed
– QCOW2 or QED if more features are

required
– Vmdk and others convert to native format

Summary
● There are many layers to the storage stack

– Some layers are optional
– Choose what you need

● Defaults: IDE storage interface and
writethrough cache mode

– Conservative and compatible
– Consider virtio-blk and none cache mode

● Image formats can be tamed with qemu-img,
qemu-nbd, and libguestfs

Questions?

Blog: http://blog.vmsplice.net/

http://blog.vmsplice.net/

QEMU Architecture
● Each guest CPU has a

dedicated vcpu
thread that uses the
kvm.ko module to
execute guest code.

● There is an I/O
thread that runs a
select(2) loop to
handle events.kvm.ko

vcpu0 vcpu1
I/O

thread

qemu-kvm

Linux

● Only one thread may be executing QEMU code at
any given time. This excludes guest code and
blocking in select(2).

Virtio-blk request lifecycle

● Request/response data and metadata live in
guest memory.

● Virtqueue kick is a pio write to a virtio PCI
hardware register.

● Completion is signaled by virtio PCI interrupt.

Data

2. Virtqueue kick 5. Interrupt3. DMA

Vring

1. Publish req

Vring

4. Publish resp

