
Runtime Power Management Framework
for I/O Devices in the Linux Kernel

Rafael J. Wysocki

Faculty of Physics UW / SUSE Labs / Renesas

June 10, 2011

Rafael J. Wysocki (rjw@sisk.pl) Runtime Power Management Framework June 10, 2011 1 / 17



Outline

1 Runtime Power Management
Motivation
Building Blocks
Mechanics
Suitability For System Suspend/Resume

2 Power Management Domains
PM Domain Definition
Support For Power Domains

Rafael J. Wysocki (rjw@sisk.pl) Runtime Power Management Framework June 10, 2011 2 / 17



Runtime Power Management Motivation

Why Do We Need a Framework for Device Runtime PM?

Well, there are a few reasons

1 Platform support may be necessary to change the power states of
devices.

2 Wakeup signaling is often platform-dependent or bus-dependent
(e. g. PCI devices don’t generate interrupts from low-power states).

3 Drivers may not know when to suspend devices.

Devices may depend on one another (accross subsystem boundaries).
No suitable “idle” condition at the driver level.

4 PM-related operations often need to be queued up for execution in
future (e. g. a workqueue is needed).

5 Runtime PM has to be compatible with system-wide transitions to a
sleep state (and back to the working state).

Rafael J. Wysocki (rjw@sisk.pl) Runtime Power Management Framework June 10, 2011 3 / 17



Runtime Power Management Building Blocks

Device “States”

Runtime PM framework uses abstract states of devices

ACTIVE – Device can do I/O (presumably in the full-power state).

SUSPENDED – Device cannot do I/O (presumably in a low-power state).

SUSPENDING – Device state is changing from ACTIVE to SUSPENDED.

RESUMING – Device state is changing from SUSPENDED to ACTIVE.

Runtime PM framework is oblivious to the actual states of devices

The real states of devices at any given time depend on the subsystems and
drivers that handle them.

Rafael J. Wysocki (rjw@sisk.pl) Runtime Power Management Framework June 10, 2011 4 / 17



Runtime Power Management Building Blocks

Device “States”

Runtime PM framework uses abstract states of devices

ACTIVE – Device can do I/O (presumably in the full-power state).

SUSPENDED – Device cannot do I/O (presumably in a low-power state).

SUSPENDING – Device state is changing from ACTIVE to SUSPENDED.

RESUMING – Device state is changing from SUSPENDED to ACTIVE.

Runtime PM framework is oblivious to the actual states of devices

The real states of devices at any given time depend on the subsystems and
drivers that handle them.

Rafael J. Wysocki (rjw@sisk.pl) Runtime Power Management Framework June 10, 2011 4 / 17



Runtime Power Management Building Blocks

Changing the (Runtime PM) State of a Device

Suspend functions

int pm_runtime_suspend(struct device *dev);

int pm_schedule_suspend(struct device *dev, unsigned int delay);

Resume functions

int pm_runtime_resume(struct device *dev);

int pm_request_resume(struct device *dev);

Notifications of (apparent) idleness

int pm_runtime_idle(struct device *dev);

int pm_request_idle(struct device *dev);

Rafael J. Wysocki (rjw@sisk.pl) Runtime Power Management Framework June 10, 2011 5 / 17



Runtime Power Management Building Blocks

Changing the (Runtime PM) State of a Device

Suspend functions

int pm_runtime_suspend(struct device *dev);

int pm_schedule_suspend(struct device *dev, unsigned int delay);

Resume functions

int pm_runtime_resume(struct device *dev);

int pm_request_resume(struct device *dev);

Notifications of (apparent) idleness

int pm_runtime_idle(struct device *dev);

int pm_request_idle(struct device *dev);

Rafael J. Wysocki (rjw@sisk.pl) Runtime Power Management Framework June 10, 2011 5 / 17



Runtime Power Management Building Blocks

Changing the (Runtime PM) State of a Device

Suspend functions

int pm_runtime_suspend(struct device *dev);

int pm_schedule_suspend(struct device *dev, unsigned int delay);

Resume functions

int pm_runtime_resume(struct device *dev);

int pm_request_resume(struct device *dev);

Notifications of (apparent) idleness

int pm_runtime_idle(struct device *dev);

int pm_request_idle(struct device *dev);

Rafael J. Wysocki (rjw@sisk.pl) Runtime Power Management Framework June 10, 2011 5 / 17



Runtime Power Management Building Blocks

Reference Counting

Devices with references held cannot be suspended.

Taking a reference

int pm_runtime_get(struct device *dev); /* + resume request */

int pm_runtime_get_sync(struct device *dev); /* + sync resume */

int pm_runtime_get_noresume(struct device *dev);

Dropping a reference

int pm_runtime_put(struct device *dev); /* + idle request */

int pm_runtime_put_sync(struct device *dev); /* + sync idle */

int pm_runtime_put_noidle(struct device *dev);

Rafael J. Wysocki (rjw@sisk.pl) Runtime Power Management Framework June 10, 2011 6 / 17



Runtime Power Management Building Blocks

Reference Counting

Devices with references held cannot be suspended.

Taking a reference

int pm_runtime_get(struct device *dev); /* + resume request */

int pm_runtime_get_sync(struct device *dev); /* + sync resume */

int pm_runtime_get_noresume(struct device *dev);

Dropping a reference

int pm_runtime_put(struct device *dev); /* + idle request */

int pm_runtime_put_sync(struct device *dev); /* + sync idle */

int pm_runtime_put_noidle(struct device *dev);

Rafael J. Wysocki (rjw@sisk.pl) Runtime Power Management Framework June 10, 2011 6 / 17



Runtime Power Management Building Blocks

Reference Counting

Devices with references held cannot be suspended.

Taking a reference

int pm_runtime_get(struct device *dev); /* + resume request */

int pm_runtime_get_sync(struct device *dev); /* + sync resume */

int pm_runtime_get_noresume(struct device *dev);

Dropping a reference

int pm_runtime_put(struct device *dev); /* + idle request */

int pm_runtime_put_sync(struct device *dev); /* + sync idle */

int pm_runtime_put_noidle(struct device *dev);

Rafael J. Wysocki (rjw@sisk.pl) Runtime Power Management Framework June 10, 2011 6 / 17



Runtime Power Management Building Blocks

Subsystem and Driver Callbacks

include/linux/pm.h

struct dev_pm_ops {

...

int (*runtime_suspend)(struct device *dev);

int (*runtime_resume)(struct device *dev);

int (*runtime_idle)(struct device *dev);

};

include/linux/device.h

struct device_driver {

...

const struct dev_pm_ops *pm;

...

};

struct struct bus_type {

...

const struct dev_pm_ops *pm;

...

};

Rafael J. Wysocki (rjw@sisk.pl) Runtime Power Management Framework June 10, 2011 7 / 17



Runtime Power Management Building Blocks

Subsystem and Driver Callbacks

include/linux/pm.h

struct dev_pm_ops {

...

int (*runtime_suspend)(struct device *dev);

int (*runtime_resume)(struct device *dev);

int (*runtime_idle)(struct device *dev);

};

include/linux/device.h

struct device_driver {

...

const struct dev_pm_ops *pm;

...

};

struct struct bus_type {

...

const struct dev_pm_ops *pm;

...

};

Rafael J. Wysocki (rjw@sisk.pl) Runtime Power Management Framework June 10, 2011 7 / 17



Runtime Power Management Building Blocks

Wakeup Signaling Mechanisms

Depend on the platform and bus type

1 Special signals from low-power states (device signal causes another
device to generate an interrupt).

PCI Power Management Event (PME) signals.
PNP wakeup signals.
USB “remote wakeup”.

2 Interrupts from low-power states (wakeup interrupts).

What is needed?

1 Subsystem and/or driver callbacks need to set up devices to generate
these signals.

2 The resulting interrupts need to be handled (devices should be put
into the ACTIVE state as a result).

Rafael J. Wysocki (rjw@sisk.pl) Runtime Power Management Framework June 10, 2011 8 / 17



Runtime Power Management Building Blocks

Wakeup Signaling Mechanisms

Depend on the platform and bus type

1 Special signals from low-power states (device signal causes another
device to generate an interrupt).

PCI Power Management Event (PME) signals.
PNP wakeup signals.
USB “remote wakeup”.

2 Interrupts from low-power states (wakeup interrupts).

What is needed?

1 Subsystem and/or driver callbacks need to set up devices to generate
these signals.

2 The resulting interrupts need to be handled (devices should be put
into the ACTIVE state as a result).

Rafael J. Wysocki (rjw@sisk.pl) Runtime Power Management Framework June 10, 2011 8 / 17



Runtime Power Management Building Blocks

sysfs Interface

/sys/devices/.../power/control

on – Device is always ACTIVE (default).

auto – Device state can change.

/sys/devices/.../power/runtime status (read-only, 2.6.36 material)

active – Device is ACTIVE.

suspended – Device is SUSPENDED.

suspending – Device state is changing from ACTIVE to SUSPENDED.

resuming – Device state is changing from SUSPENDED to ACTIVE.

error – Runtime PM failure (runtime PM of the device is disabled).

unsupported – Runtime PM of the device has not been enabled.

Rafael J. Wysocki (rjw@sisk.pl) Runtime Power Management Framework June 10, 2011 9 / 17



Runtime Power Management Building Blocks

sysfs Interface

/sys/devices/.../power/control

on – Device is always ACTIVE (default).

auto – Device state can change.

/sys/devices/.../power/runtime status (read-only, 2.6.36 material)

active – Device is ACTIVE.

suspended – Device is SUSPENDED.

suspending – Device state is changing from ACTIVE to SUSPENDED.

resuming – Device state is changing from SUSPENDED to ACTIVE.

error – Runtime PM failure (runtime PM of the device is disabled).

unsupported – Runtime PM of the device has not been enabled.

Rafael J. Wysocki (rjw@sisk.pl) Runtime Power Management Framework June 10, 2011 9 / 17



Runtime Power Management Building Blocks

powertop Support (Since 2.6.36)

Two additional per-device sysfs files.

/sys/devices/.../power/runtime active time

Time spent in the ACTIVE state.

/sys/devices/.../power/runtime suspended time

Time spent in the SUSPENDED state.

powertop will use them to report per-device “power” statistics.

Rafael J. Wysocki (rjw@sisk.pl) Runtime Power Management Framework June 10, 2011 10 / 17



Runtime Power Management Building Blocks

powertop Support (Since 2.6.36)

Two additional per-device sysfs files.

/sys/devices/.../power/runtime active time

Time spent in the ACTIVE state.

/sys/devices/.../power/runtime suspended time

Time spent in the SUSPENDED state.

powertop will use them to report per-device “power” statistics.

Rafael J. Wysocki (rjw@sisk.pl) Runtime Power Management Framework June 10, 2011 10 / 17



Runtime Power Management Building Blocks

powertop Support (Since 2.6.36)

Two additional per-device sysfs files.

/sys/devices/.../power/runtime active time

Time spent in the ACTIVE state.

/sys/devices/.../power/runtime suspended time

Time spent in the SUSPENDED state.

powertop will use them to report per-device “power” statistics.

Rafael J. Wysocki (rjw@sisk.pl) Runtime Power Management Framework June 10, 2011 10 / 17



Runtime Power Management Building Blocks

powertop Support (Since 2.6.36)

Two additional per-device sysfs files.

/sys/devices/.../power/runtime active time

Time spent in the ACTIVE state.

/sys/devices/.../power/runtime suspended time

Time spent in the SUSPENDED state.

powertop will use them to report per-device “power” statistics.

Rafael J. Wysocki (rjw@sisk.pl) Runtime Power Management Framework June 10, 2011 10 / 17



Runtime Power Management Mechanics

The Execution of Callbacks

The PM core executes subsystem callbacks

The subsystem may be either a device type, or a device class, or a device
type (in this order).

Subsystem callbacks (are supposed to) execute driver callbacks

1 The subsystem callbacks are responsible for handling the device.

2 They may or may not execute the driver callbacks.

3 What the driver callbacks are expected to do depends on the
subsystem.

Rafael J. Wysocki (rjw@sisk.pl) Runtime Power Management Framework June 10, 2011 11 / 17



Runtime Power Management Mechanics

The Execution of Callbacks

The PM core executes subsystem callbacks

The subsystem may be either a device type, or a device class, or a device
type (in this order).

Subsystem callbacks (are supposed to) execute driver callbacks

1 The subsystem callbacks are responsible for handling the device.

2 They may or may not execute the driver callbacks.

3 What the driver callbacks are expected to do depends on the
subsystem.

Rafael J. Wysocki (rjw@sisk.pl) Runtime Power Management Framework June 10, 2011 11 / 17



Runtime Power Management Mechanics

Automatic Idle Notifications, System Suspend

The PM core triggers automatic idle notifications

1 After a device has been (successfully) put into the ACTIVE state.

2 After all children of a device have been suspended.

This causes an idle notification request to be queued up for the device.

The PM workqueue is freezable

Only synchronous operations (runtime suspend, runtime resume) work
during system-wide suspend/hibernation.

Rafael J. Wysocki (rjw@sisk.pl) Runtime Power Management Framework June 10, 2011 12 / 17



Runtime Power Management Mechanics

Automatic Idle Notifications, System Suspend

The PM core triggers automatic idle notifications

1 After a device has been (successfully) put into the ACTIVE state.

2 After all children of a device have been suspended.

This causes an idle notification request to be queued up for the device.

The PM workqueue is freezable

Only synchronous operations (runtime suspend, runtime resume) work
during system-wide suspend/hibernation.

Rafael J. Wysocki (rjw@sisk.pl) Runtime Power Management Framework June 10, 2011 12 / 17



Runtime Power Management Mechanics

Automatic Idle Notifications, System Suspend

The PM core triggers automatic idle notifications

1 After a device has been (successfully) put into the ACTIVE state.

2 After all children of a device have been suspended.

This causes an idle notification request to be queued up for the device.

The PM workqueue is freezable

Only synchronous operations (runtime suspend, runtime resume) work
during system-wide suspend/hibernation.

Rafael J. Wysocki (rjw@sisk.pl) Runtime Power Management Framework June 10, 2011 12 / 17



Runtime Power Management Suitability For System Suspend/Resume

I/O Runtime PM Reference Counting Problem

In general, there is no guarantee that all device runtime PM usage
counters will be 0 before (or even during) system suspend.

For this reason, the I/O runtime PM framework cannot be used directly
for suspending devices during system suspend.

Nevertheless, it generally is possible to use the same PM callback routines
for both runtime PM and system suspend/resume at the driver level (not
necessarily at the subsystem level).

That may or may not be a good idea depending on the platform the driver
is designed for.

Rafael J. Wysocki (rjw@sisk.pl) Runtime Power Management Framework June 10, 2011 13 / 17



Runtime Power Management Suitability For System Suspend/Resume

I/O Runtime PM Reference Counting Problem

In general, there is no guarantee that all device runtime PM usage
counters will be 0 before (or even during) system suspend.

For this reason, the I/O runtime PM framework cannot be used directly
for suspending devices during system suspend.

Nevertheless, it generally is possible to use the same PM callback routines
for both runtime PM and system suspend/resume at the driver level (not
necessarily at the subsystem level).

That may or may not be a good idea depending on the platform the driver
is designed for.

Rafael J. Wysocki (rjw@sisk.pl) Runtime Power Management Framework June 10, 2011 13 / 17



Runtime Power Management Suitability For System Suspend/Resume

I/O Runtime PM Reference Counting Problem

In general, there is no guarantee that all device runtime PM usage
counters will be 0 before (or even during) system suspend.

For this reason, the I/O runtime PM framework cannot be used directly
for suspending devices during system suspend.

Nevertheless, it generally is possible to use the same PM callback routines
for both runtime PM and system suspend/resume at the driver level (not
necessarily at the subsystem level).

That may or may not be a good idea depending on the platform the driver
is designed for.

Rafael J. Wysocki (rjw@sisk.pl) Runtime Power Management Framework June 10, 2011 13 / 17



Runtime Power Management Suitability For System Suspend/Resume

I/O Runtime PM Reference Counting Problem

In general, there is no guarantee that all device runtime PM usage
counters will be 0 before (or even during) system suspend.

For this reason, the I/O runtime PM framework cannot be used directly
for suspending devices during system suspend.

Nevertheless, it generally is possible to use the same PM callback routines
for both runtime PM and system suspend/resume at the driver level (not
necessarily at the subsystem level).

That may or may not be a good idea depending on the platform the driver
is designed for.

Rafael J. Wysocki (rjw@sisk.pl) Runtime Power Management Framework June 10, 2011 13 / 17



Runtime Power Management Suitability For System Suspend/Resume

Remote Wakeup Problem

Runtime PM requires that remote wakeup be set up, if supported, for all
devices being suspended (needed for transparency from the user space’s
perspective).

In the system sleep case that depends on information provided by user
space via sysfs.

Therefore subsystem-level PM callbacks need to work differently during
system suspend/resume and during the analogous runtime PM operations.

This applies to power domain PM callbacks too.

Rafael J. Wysocki (rjw@sisk.pl) Runtime Power Management Framework June 10, 2011 14 / 17



Runtime Power Management Suitability For System Suspend/Resume

Remote Wakeup Problem

Runtime PM requires that remote wakeup be set up, if supported, for all
devices being suspended (needed for transparency from the user space’s
perspective).

In the system sleep case that depends on information provided by user
space via sysfs.

Therefore subsystem-level PM callbacks need to work differently during
system suspend/resume and during the analogous runtime PM operations.

This applies to power domain PM callbacks too.

Rafael J. Wysocki (rjw@sisk.pl) Runtime Power Management Framework June 10, 2011 14 / 17



Runtime Power Management Suitability For System Suspend/Resume

Remote Wakeup Problem

Runtime PM requires that remote wakeup be set up, if supported, for all
devices being suspended (needed for transparency from the user space’s
perspective).

In the system sleep case that depends on information provided by user
space via sysfs.

Therefore subsystem-level PM callbacks need to work differently during
system suspend/resume and during the analogous runtime PM operations.

This applies to power domain PM callbacks too.

Rafael J. Wysocki (rjw@sisk.pl) Runtime Power Management Framework June 10, 2011 14 / 17



Runtime Power Management Suitability For System Suspend/Resume

Remote Wakeup Problem

Runtime PM requires that remote wakeup be set up, if supported, for all
devices being suspended (needed for transparency from the user space’s
perspective).

In the system sleep case that depends on information provided by user
space via sysfs.

Therefore subsystem-level PM callbacks need to work differently during
system suspend/resume and during the analogous runtime PM operations.

This applies to power domain PM callbacks too.

Rafael J. Wysocki (rjw@sisk.pl) Runtime Power Management Framework June 10, 2011 14 / 17



Power Management Domains PM Domain Definition

What A Power Management Domain Is

Technically

Power domain is a set of devices sharing power resources (e.g. clocks,
power planes).

From the kernel’s perspective

Power management domain is a set of devices whose power management
uses the same set of callbacks with common PM data at the subsystem
level (not necessarily in one power domain, but mutually dependent).

Representation via struct dev_power_domain and derived structures
(need to change the name!).

If a PM domain object exists for a device, its PM callbacks take
precedence over bus type (or device class, or type) callbacks (3.0-rc1).

Rafael J. Wysocki (rjw@sisk.pl) Runtime Power Management Framework June 10, 2011 15 / 17



Power Management Domains PM Domain Definition

What A Power Management Domain Is

Technically

Power domain is a set of devices sharing power resources (e.g. clocks,
power planes).

From the kernel’s perspective

Power management domain is a set of devices whose power management
uses the same set of callbacks with common PM data at the subsystem
level (not necessarily in one power domain, but mutually dependent).

Representation via struct dev_power_domain and derived structures
(need to change the name!).

If a PM domain object exists for a device, its PM callbacks take
precedence over bus type (or device class, or type) callbacks (3.0-rc1).

Rafael J. Wysocki (rjw@sisk.pl) Runtime Power Management Framework June 10, 2011 15 / 17



Power Management Domains PM Domain Definition

What A Power Management Domain Is

Technically

Power domain is a set of devices sharing power resources (e.g. clocks,
power planes).

From the kernel’s perspective

Power management domain is a set of devices whose power management
uses the same set of callbacks with common PM data at the subsystem
level (not necessarily in one power domain, but mutually dependent).

Representation via struct dev_power_domain and derived structures
(need to change the name!).

If a PM domain object exists for a device, its PM callbacks take
precedence over bus type (or device class, or type) callbacks (3.0-rc1).

Rafael J. Wysocki (rjw@sisk.pl) Runtime Power Management Framework June 10, 2011 15 / 17



Power Management Domains PM Domain Definition

What A Power Management Domain Is

Technically

Power domain is a set of devices sharing power resources (e.g. clocks,
power planes).

From the kernel’s perspective

Power management domain is a set of devices whose power management
uses the same set of callbacks with common PM data at the subsystem
level (not necessarily in one power domain, but mutually dependent).

Representation via struct dev_power_domain and derived structures
(need to change the name!).

If a PM domain object exists for a device, its PM callbacks take
precedence over bus type (or device class, or type) callbacks (3.0-rc1).

Rafael J. Wysocki (rjw@sisk.pl) Runtime Power Management Framework June 10, 2011 15 / 17



Power Management Domains Support For Power Domains

Power Domains and PM Domains

PM domains are a more general concept (there need not be a power
domain for a PM domain object to be useful).

Nevertheless, the main intended purpose of PM domains is to support
power domains.

The current proposal is to add PM domains support for the simple case in
which a device can belong to one power domain at a time and there is a
clearly defined way to power off and power down a power domain.

Rafael J. Wysocki (rjw@sisk.pl) Runtime Power Management Framework June 10, 2011 16 / 17



Power Management Domains Support For Power Domains

Power Domains and PM Domains

PM domains are a more general concept (there need not be a power
domain for a PM domain object to be useful).

Nevertheless, the main intended purpose of PM domains is to support
power domains.

The current proposal is to add PM domains support for the simple case in
which a device can belong to one power domain at a time and there is a
clearly defined way to power off and power down a power domain.

Rafael J. Wysocki (rjw@sisk.pl) Runtime Power Management Framework June 10, 2011 16 / 17



Power Management Domains Support For Power Domains

Power Domains and PM Domains

PM domains are a more general concept (there need not be a power
domain for a PM domain object to be useful).

Nevertheless, the main intended purpose of PM domains is to support
power domains.

The current proposal is to add PM domains support for the simple case in
which a device can belong to one power domain at a time and there is a
clearly defined way to power off and power down a power domain.

Rafael J. Wysocki (rjw@sisk.pl) Runtime Power Management Framework June 10, 2011 16 / 17



Power Management Domains Support For Power Domains

Runtime PM Of Power Domains

Observations

1 All devices in a power domain have to be idle so that a shared power
resource can be turned off (e.g. clock stopped or power removed).

2 Power is necessary for remote wakeup to work.

3 Latency to turn a power domain on generally depends on all devices
in it.

Thus the PM core should provide means by which:

1 The status of devices in a power domain may be monitored.

2 Decisions to turn power domains off may be made on the basis of
(known) device latencies and predicted next usage time (and PM
QoS).

Rafael J. Wysocki (rjw@sisk.pl) Runtime Power Management Framework June 10, 2011 17 / 17



Power Management Domains Support For Power Domains

Runtime PM Of Power Domains

Observations

1 All devices in a power domain have to be idle so that a shared power
resource can be turned off (e.g. clock stopped or power removed).

2 Power is necessary for remote wakeup to work.

3 Latency to turn a power domain on generally depends on all devices
in it.

Thus the PM core should provide means by which:

1 The status of devices in a power domain may be monitored.

2 Decisions to turn power domains off may be made on the basis of
(known) device latencies and predicted next usage time (and PM
QoS).

Rafael J. Wysocki (rjw@sisk.pl) Runtime Power Management Framework June 10, 2011 17 / 17


	Runtime Power Management
	Motivation
	Building Blocks
	Mechanics
	Suitability For System Suspend/Resume

	Power Management Domains
	PM Domain Definition
	Support For Power Domains


