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Introduction to scheduler tunables

 What are the scheduler tunables?
– Scheduler knobs exported to the user
– Controls the behavior of the scheduler
– Exported via sysctl: /proc/sys/kernel/sched_*

 Why do we need them?
– Scheduler is used  from small embedded systems to large HPC clusters
– Application scheduling behavior might have to be tweaked 
– Workload characteristics are different
– Default scheduler settings might not be optimal always 

 What will you gain from this presentation?
– How to tune the scheduler tunables
– How to arrive at the optimal set of values
– Performance improvements obtained by tuning the scheduler knobs
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How to tweak the scheduler tunables

 There are two ways to alter the default values
– Change the values directly: /proc/sys/kernel/sched_*
– Using the sysctl command to change the kernel parameters at run time

 

 Using /etc/sysctl.conf
– Eg:   kernel.sched_latency_ns = 24000000
–         # sysctl -p

[root@hs22 kernel]# pwd
/proc/sys/kernel
[root@hs22 kernel]# ls sched_*
sched_autogroup_enabled          sched_migration_cost            sched_rt_period_us   
sched_time_avg                          sched_child_runs_first            sched_min_granularity_ns  
sched_rt_runtime_us                   sched_tunable_scaling           sched_latency_ns         
sched_nr_migrate                        sched_shares_window           sched_wakeup_granularity_ns

sched_domain:
cpu0  cpu1  cpu10  cpu11  cpu12  cpu13  cpu14  cpu15  cpu2  cpu3  cpu4  cpu5  cpu6  cpu7  
cpu8  cpu9
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Introduction to CFS

 Completely Fair Scheduler

 Part of mainline kernel since v2.6.23

 Fairness imbalance is expressed via per task wait_runtime

 Tasks are ordered in a RB Tree sorted by “rq->fair_clock – p->wait_runtime”

 Scheduler picks the left most task

 CFS does not have any notion of 'timeslices'
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A deep dive in to the scheduler tunables

 sched_latency_ns
– Targeted preemption latency for 

CPU-bound tasks
– A period in which each task runs 

once
– Default = 6ms * (ilog(ncpus))     

Unit = ns
– Not the same as time slice length

                                                                                                                                                                                          

                                                                                             

 sched_compat_yield *

– Makes sys_schedule_yield more 
aggressive

– Moves the yielding task to the last 
in the rb tree

– Retained for compatibility

 sched_min_granularity
– The minimum time after which a 

task become eligible to be 
preempted

– The minimum possible preemption 
granularity

– Default:
 0.75 msec * (ilog(ncpus) 

– sched_latency / nr_tasks

                                                                                             

 sched_migration_cost
– Tunable to determine if a task can 

be migrated from one cpu to 
another

– Larger value means, the chances 
of the tasks to be migrated to 
another cpus becomes less

– Also determines if the current task 
is cache hot

 * Not present in mainline kernel anymore
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A deep dive in to the scheduler tunables

                                                                                             

 sched_child_runs_first
– If set to 0 (default) then parent will 

(try to) run first otherwise child.                                                                                             

 sched_nr_migrate
– Number of tasks to iterate in a 

single load balance run
– Limited because this is done with 

IRQs disabled

                                                                                             

 sched_wakeup_granularity_ns
– Reduces over-scheduling
– Gives an hint whether to preempt 

the current task or not                                                                                              

 sched_tunable_scaling
– The initial- and re-scaling of 

tunables
– Default: Scaled logarithmically
– Scaling now takes place on all kind 

of cpu add/remove events

 * Not present in mainline kernel anymore
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A deep dive in to the scheduler tunables

                                                                                             

 sched_rt_period_us
– Period over which we measure -rt 

task cpu usage in micro seconds
– The scheduling period that is 

equivalent to 100% CPU 
bandwidth

– Default = 1s

                                                                                             

 sched_time_avg
– Period over which we average the 

RT time consumption
– Default: 4ms

 sched_rt_runtime_us
– A global limit on how much time 

realtime scheduling may use
– Part of the period that we allow rt 

tasks to run in micro seconds
– Default: 0.95s
– A run time of -1 specifies 

runtime == period
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Test environment

 Hardware: Dual socket quad core 
with HT support

 Linux Distribution: Fedora 14

 Benchmarks
– Tbench
– Dbench
– SPECJbb
– Lmbench
– Kernbench
– Hackbench
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A quick overview about the workloads used

                                                                                             

 Tbench
– Produces TCP and process load
– Does invoke the socket() calls                                                                                             

 Dbench
– Generate IO loads
– Used to stress the filesystems

                                                                                             

 SPECJbb
– Java based benchmark
– Simulates database transactions
– Cpu intensive workload                                                                                              

 Hackbench
– Simulates the connections 

established for a chat room

 Kernbench
– Cpu throughput benchmark
– Used to compare the different 

kernels on the same machine                                                                                                                                                                                          

 Lmbench
– Suite of micro benchmarks
– Bandwidth (cached file read, m/m 

read / write, pipe)
– Latency (context switches, system 

call overhead, m/m read / write 
latency / remote wakeups)
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Impact of sched_latency_ns
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 Server and clients were 
running in the same 
machine

 Number of clients: 50

 Gave the best throughput at 
 24 ms

 Variation upto +/- 10%

 Matches with the equation

sched_latency = 

6ms * log(nr_cpus)
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Impact of sched_min_granularity_ns

 Mixed workloads were 
used

 SPECJbb 32 warehouses

 Tbench 25 clients

 Dbench 25 clients

 Significant improvement 
in the performance

 Longer execution cycles 
helping the workloads

 Kernel: 2.6.35.fc14
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Impact of sched_compat_yield
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 Kernel: 2.6.35.6-45.fc14

 SPECJbb
– 8 Instances with 4 

warehouses each
– Total 32 warehouses

 +5% improvement

 Around +15% improvement 
was observed in a 2.6.32 
based kernel

 sched_compat_yield is no 
longer present in mainline 
kernels
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Impact of sched_wakeup_granularity_ns

 Mixed workloads were 
used

 SPECJbb 32 warehouses

 Tbench 25 clients

 Dbench 25 clients

 Significant improvement 
in the performance for 
SPECJbb & dbench

 Tbench performance goes 
down as it is a 
client/server benchmark, 
which needs faster 
responses
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Thank You!

Questions / Discussions

?
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Follow us on Twitter:         
@ Linux_at_IBM

Like us on Facebook: 
Linux at IBM

www.ibm.com/linux

Follow us on Twitter:         
@ OpenKVM

Like us on Facebook: 
KVM at IBM

www.ibm.com/systems/kvm

Linux Open Virtualization & KVM

Stay current on Linux and Open Virtualization at IBM
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