
© 2011 IBM Corporation

Analyzing the impact of sysctl scheduler tunables

LinuxCon, Vancouver 2011

Ciju Rajan K [cijurajan@in.ibm.com]

Linux Technology Center

mailto:cijurajan@in.ibm.com

© 2011 IBM Corporation2

August 20, 2011

Agenda

 Introduction to scheduler tunables

How to tweak the scheduler tunables

 Introduction to CFS

A deep dive into scheduler tunables

Test environment

A quick overview about the workloads used

 Impact of sched_latency_ns

 Impact of sched_min_granularity_ns

 Impact of sched_compat_yield

 Impact of sched_wakeup_granularity_ns

References

© 2011 IBM Corporation3

August 20, 2011

Introduction to scheduler tunables

 What are the scheduler tunables?
– Scheduler knobs exported to the user
– Controls the behavior of the scheduler
– Exported via sysctl: /proc/sys/kernel/sched_*

 Why do we need them?
– Scheduler is used from small embedded systems to large HPC clusters
– Application scheduling behavior might have to be tweaked
– Workload characteristics are different
– Default scheduler settings might not be optimal always

 What will you gain from this presentation?
– How to tune the scheduler tunables
– How to arrive at the optimal set of values
– Performance improvements obtained by tuning the scheduler knobs

© 2011 IBM Corporation4

August 20, 2011

How to tweak the scheduler tunables

 There are two ways to alter the default values
– Change the values directly: /proc/sys/kernel/sched_*
– Using the sysctl command to change the kernel parameters at run time

 Using /etc/sysctl.conf
– Eg: kernel.sched_latency_ns = 24000000
– # sysctl -p

[root@hs22 kernel]# pwd
/proc/sys/kernel
[root@hs22 kernel]# ls sched_*
sched_autogroup_enabled sched_migration_cost sched_rt_period_us
sched_time_avg sched_child_runs_first sched_min_granularity_ns
sched_rt_runtime_us sched_tunable_scaling sched_latency_ns
sched_nr_migrate sched_shares_window sched_wakeup_granularity_ns

sched_domain:
cpu0 cpu1 cpu10 cpu11 cpu12 cpu13 cpu14 cpu15 cpu2 cpu3 cpu4 cpu5 cpu6 cpu7
cpu8 cpu9

© 2011 IBM Corporation5

August 20, 2011

Introduction to CFS

 Completely Fair Scheduler

 Part of mainline kernel since v2.6.23

 Fairness imbalance is expressed via per task wait_runtime

 Tasks are ordered in a RB Tree sorted by “rq->fair_clock – p->wait_runtime”

 Scheduler picks the left most task

 CFS does not have any notion of 'timeslices'

© 2011 IBM Corporation6

August 20, 2011

A deep dive in to the scheduler tunables

 sched_latency_ns
– Targeted preemption latency for

CPU-bound tasks
– A period in which each task runs

once
– Default = 6ms * (ilog(ncpus))

Unit = ns
– Not the same as time slice length

 sched_compat_yield *

– Makes sys_schedule_yield more
aggressive

– Moves the yielding task to the last
in the rb tree

– Retained for compatibility

 sched_min_granularity
– The minimum time after which a

task become eligible to be
preempted

– The minimum possible preemption
granularity

– Default:
 0.75 msec * (ilog(ncpus)

– sched_latency / nr_tasks

 sched_migration_cost
– Tunable to determine if a task can

be migrated from one cpu to
another

– Larger value means, the chances
of the tasks to be migrated to
another cpus becomes less

– Also determines if the current task
is cache hot

 * Not present in mainline kernel anymore

© 2011 IBM Corporation7

August 20, 2011

A deep dive in to the scheduler tunables

 sched_child_runs_first
– If set to 0 (default) then parent will

(try to) run first otherwise child.

 sched_nr_migrate
– Number of tasks to iterate in a

single load balance run
– Limited because this is done with

IRQs disabled

 sched_wakeup_granularity_ns
– Reduces over-scheduling
– Gives an hint whether to preempt

the current task or not

 sched_tunable_scaling
– The initial- and re-scaling of

tunables
– Default: Scaled logarithmically
– Scaling now takes place on all kind

of cpu add/remove events

 * Not present in mainline kernel anymore

© 2011 IBM Corporation8

August 20, 2011

A deep dive in to the scheduler tunables

 sched_rt_period_us
– Period over which we measure -rt

task cpu usage in micro seconds
– The scheduling period that is

equivalent to 100% CPU
bandwidth

– Default = 1s

 sched_time_avg
– Period over which we average the

RT time consumption
– Default: 4ms

 sched_rt_runtime_us
– A global limit on how much time

realtime scheduling may use
– Part of the period that we allow rt

tasks to run in micro seconds
– Default: 0.95s
– A run time of -1 specifies

runtime == period

© 2011 IBM Corporation9

August 20, 2011

Test environment

 Hardware: Dual socket quad core
with HT support

 Linux Distribution: Fedora 14

 Benchmarks
– Tbench
– Dbench
– SPECJbb
– Lmbench
– Kernbench
– Hackbench

© 2011 IBM Corporation10

August 20, 2011

A quick overview about the workloads used

 Tbench
– Produces TCP and process load
– Does invoke the socket() calls

 Dbench
– Generate IO loads
– Used to stress the filesystems

 SPECJbb
– Java based benchmark
– Simulates database transactions
– Cpu intensive workload

 Hackbench
– Simulates the connections

established for a chat room

 Kernbench
– Cpu throughput benchmark
– Used to compare the different

kernels on the same machine

 Lmbench
– Suite of micro benchmarks
– Bandwidth (cached file read, m/m

read / write, pipe)
– Latency (context switches, system

call overhead, m/m read / write
latency / remote wakeups)

© 2011 IBM Corporation11

August 20, 2011

Impact of sched_latency_ns

6 ms 12 ms 24 ms 48 ms 100 ms 200 ms
2150

2200

2250

2300

2350

2400

2450

2500

2550

tbench

sched_latency_ns

M
B

 /
se

c

 Server and clients were
running in the same
machine

 Number of clients: 50

 Gave the best throughput at
 24 ms

 Variation upto +/- 10%

 Matches with the equation

sched_latency =

6ms * log(nr_cpus)

© 2011 IBM Corporation12

August 20, 2011

Impact of sched_min_granularity_ns

 Mixed workloads were
used

 SPECJbb 32 warehouses

 Tbench 25 clients

 Dbench 25 clients

 Significant improvement
in the performance

 Longer execution cycles
helping the workloads

 Kernel: 2.6.35.fc14

3 ms 6 ms 9 ms
300000

320000

340000

360000

380000

SPECJbb

sched_min_granularity_ns

re
co

rd
s

3 ms 6 ms 9 ms
1400

1500

1600

1700

1800

tbench

sched_min_granularity_ns

M
B

/s
e

c

3 ms 6 ms 9 ms
0

50

100

150

dbench

sched_min_granularity_ns

M
B

/s
e

c

© 2011 IBM Corporation13

August 20, 2011

Impact of sched_compat_yield

0 1
710000

720000

730000

740000

750000

760000

770000

SPECJbb

sched_compat_yield

R
e

co
rd

s

 Kernel: 2.6.35.6-45.fc14

 SPECJbb
– 8 Instances with 4

warehouses each
– Total 32 warehouses

 +5% improvement

 Around +15% improvement
was observed in a 2.6.32
based kernel

 sched_compat_yield is no
longer present in mainline
kernels

© 2011 IBM Corporation14

August 20, 2011

Impact of sched_wakeup_granularity_ns

 Mixed workloads were
used

 SPECJbb 32 warehouses

 Tbench 25 clients

 Dbench 25 clients

 Significant improvement
in the performance for
SPECJbb & dbench

 Tbench performance goes
down as it is a
client/server benchmark,
which needs faster
responses

4 ms 8 ms 12 ms
400000

405000

410000

415000

SPECJbb

sched_wakeup_granularity_ns

re
co

rd
s

4 ms 8 ms 12 ms
1440

1460

1480

1500

tbench

sched_wakeup_granularity_ns

M
B

/s
e

c

4 ms 8 ms 12 ms
115

120

125

130

dbench

sched_wakeup_granularity_ns

M
B

/s
e

c

© 2011 IBM Corporation15

August 20, 2011

References

 CFS documentation: Kernel/Documentation/sched-*

 CFS scheduler: kernel/sched_fair.c

 CPU bandwidth control: http://lwn.net/Articles/452584/

 Cgorups: Kernel/Documentation/cgroups/

 My blog: http://krm4linux.blogspot.com/

http://lwn.net/Articles/452584/
http://krm4linux.blogspot.com/

© 2011 IBM Corporation16

August 20, 2011

Acknowledgments

 Prasad Krishnan

 Vaidyanathan Srinivasan

 Bharata B Rao

 Nikunj A Dadhania

 Srivatsa V

 Larry B. Kessler

 Naren A Devaiah

Thank You!

Questions / Discussions

?

© 2011 IBM Corporation17

August 20, 2011

Follow us on Twitter:
@ Linux_at_IBM

Like us on Facebook:
Linux at IBM

www.ibm.com/linux

Follow us on Twitter:
@ OpenKVM

Like us on Facebook:
KVM at IBM

www.ibm.com/systems/kvm

Linux Open Virtualization & KVM

Stay current on Linux and Open Virtualization at IBM

http://twitter.com/
http://twitter.com/
http://www.facebook.com/pages/Linux-At-IBM/150713791632383
http://twitter.com/
http://twitter.com/
http://www.facebook.com/KVMatIBM

© 2011 IBM Corporation18

August 20, 2011

Legal Statement

 Copyright International Business Machines Corporation 2011

 Permission to redistribute in accordance with Linux Foundation LinuxCon
2011 submission guidelines is granted; all other rights reserved.

 This work represents the view of the authors and does not necessarily
represent the view of IBM.

 IBM, IBM logo, ibm.com are trademarks of International Business Machines
Corporation in the United States, other countries, or both.

 Intel is a trademark or registered trademark of Intel Corporation or it
subsidiaries in the United States and other countries.

 Linux is a registered trademark of Linus Torvalds in the United States, other
countries, or both.

 Other company, product, and service names may be trademarks or service
marks of others.

 References in this publication to IBM products or services do not imply that
IBM intends to make them available in all countries in which IBM operates.

© 2011 IBM Corporation19

August 20, 2011

Legal Statement

 INTERNATIONAL BUSINESS MACHINES CORPORATION PROVIDES THIS
PUBLICATION "AS IS" WITHOUT WARRANTY OF ANY KIND, EITHER
EXPRESS OR IMPLIED, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED
WARRANTIES OF NON-INFRINGEMENT, MERCHANTABILITY OR FITNESS
FOR A PARTICULAR PURPOSE. Some states do not allow disclaimer of
express or implied warranties in certain transactions, therefore, this
statement may not apply to you. This information could include technical
inaccuracies or typographical errors. Changes are periodically made to the
information herein; these changes will be incorporated in new editions of the
publication. IBM may make improvements and/or changes in the product(s)
and/or the program(s) described in this publication at any time without
notice.

	Slide 1
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11
	Slide 12
	Slide 13
	Slide 14
	Slide 15
	Slide 16
	Slide 17
	Slide 18
	Slide 19

